数学の問題一覧

カテゴリ
以上
以下

絶対値(21)

y 自動ジャッジ 難易度:
2月前

4

$$
|i^{2024}|
$$

複合計算問題

y 自動ジャッジ 難易度:
2月前

0

$$
\int_0^{sin30}(log_2\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{{\sqrt{1024}}^{n}}}}}}}}}-log_216)dn
$$

根号と絶対値と指数・対数の計算

y 自動ジャッジ 難易度:
2月前

2

$$
|2^{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{{1024}}}}}}}}}}}-log_21024|
$$

数列の桁和

mahiro 自動ジャッジ 難易度:
2月前

8

問題文

以下の式の ( $10$ 進法における) 桁和を求めなさい.$$4+\sum_{k=0}^{99}(500+(-1)^k×513)×10^k$$

解答形式

非負整数で回答して下さい.

2月前

11

問題

$1$ 以上の整数 $n$ について関数 $f(n)$ は以下の式により定義されます.$$f(n)=\sum_{k=1}^{2n}\prod_{m=0}^{2^9}(k-m)$$ このとき,$f(n)=0$ の成り立つ $n$ の総和は,素数 $p$ と整数 $m$ を用いて,$pm$ と示せるので,$p+m$ の最小値を回答してください.
 ただし,素数表:https://onlinemathcontest.com/primes は用いても構いません.

解答形式

非負整数で回答してください.

2月前

3

問題文

下の図において, $\triangle ABC$ と $\triangle BDE$ は二等辺三角形です. さらに,
$$\angle ABC=\angle BDE=90^\circ,\hspace{1pc} \angle EBC=60^\circ\\
BC=32, \hspace{1pc} DB=6\sqrt{2}$$ が成立します. 線分 $AE$ の中点を $M$ とするとき, 線分 $DM$ の長さを求めてください.
ただし, $E$ は $\triangle ABC$ の内側にあります.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

絶対値(20)

y 自動ジャッジ 難易度:
2月前

11

$$
|2^{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{1024}}}}}}}}}}-8|
$$

絶対値(19)

y 自動ジャッジ 難易度:
2月前

4

$$
|2^{n-1}+1|
$$
$$
nが、整数のとき、上の式は、必ず(α)である。
$$
$$
(1)負(2)正
$$

下位5桁

Ultimate 自動ジャッジ 難易度:
2月前

5

問題文

101^100の下位5桁(万の位まで)を求めよ。

解答形式

半角でお願いします。

中学数学

Ultimate 自動ジャッジ 難易度:
2月前

8

問題文

√5の小数部分をaとするとき、a-√5の値を求めよ。

解答形式

数字や符号は半角で解答してください

2024⑥

7777777 採点者ジャッジ 難易度:
2月前

1

問題文

$2024!$の約数の和は$2025$の倍数であることを示せ。

関数方程式

noname 採点者ジャッジ 難易度:
2月前

0

問題文

実数に対して定義され実数値をとる関数$f$であって、任意の実数$x,y$に対して$$f(f(x)+y)=2f^{[|y|]}(x)+f^{[|x|]}(y)$$を満たすものを全て求めてください。ただし、$f^{s}(t)$は$$f^{s}(t)=f(f(f(…f(t)))…),f^0(x)=0$$($f$が$s$個)、$[α]$は$α$以下の最大の整数とします。

*解答だけで構いません。