$26$ 種類あるアルファベットの大文字からなる文字列に対し,次のようにして整数を対応付けます.
例えば,文字列 $CAT$ は,$C$ が $3$ 番目,$A$ が $1$ 番目,$T$ が $20$ 番目のアルファベットであるから $3120$ となります.このように,ある文字列に対応付けられる整数は一意に定まります.
いま,ある文字列に対応付く整数が $12012311821$ となりました.元の文字列として考えられるものはいくつありますか?
答えは非負整数値となるので,それを半角で入力してください.
相異なる $1$ 以上 $9$ 以下の整数の組 ($A,E,M,S,T,U,Y$) が以下の覆面算を満たしています
$$\begin{array}{rr}
& MATU \\
+ & YAMA \\
\hline
& EAST
\end{array}$$
このとき、$EAST$ としてありうる値を見つけてください。
$EAST$ としてありうる値が$3$つ存在するので、それらの総和を解答してください。
$2025年9月25日$ のように、西暦、年、日が全て平方数であるような日をEMOい日とします。
$2025年9月25日$ の次のEMOい日は $a年b月c日$ です。$a+b+c$ を解答してください
半角数字で解答してください
$$9^a=2^b+5^c$$
を満たす非負整数の組 $(a,b,c)$ を全て求めてください。
$(a,b,c)$ としてありうる組すべてについて、$a+b+c$ の総和を解答してください
$n^9$ と $n^{25}$ の $1$ の位が等しいような $1$ 桁の正整数 $n$ を全て求め、それらの総和を解答してください。
半角数字で解答してください
$AB=10,BC=21,CA=17$ をみたす三角形 $ABC$ の内心を $I$ とします。辺 $AB$ 上に点 $D$ をとると、直線 $DI$ が三角形 $ABC$ の面積を $2$ 等分し、さらに辺 $BC$ と交わりました。このときの線分 $AD$ の長さを求めてください。
$AD$ の長さは正整数$a,b$を用いて $\sqrt{a}-b$ と表されるので、$a+b$ を解答してください
ある三角形は内接円の半径が $9$、外接円の半径が $25$、傍接円の一つの半径が $\sqrt{2025}$ です。この三角形の面積を求めてください
解答は正の整数値になるので、その値を解答してください。
同一平面上に $2$ 円 $\omega_{1},\omega_{2}$ があり、相異なる$2$ 点 $A,B$ で交わっています。$A$ における $\omega_{2}$ の接線を $l_{A}$ 、$B$ における $\omega_{1}$ の接線を$l_{B}$ とし、$l_{A}$ と $l_{B}$ の交点を $X$ とします。また、$l_{A}$ と $\omega_{1}$ の交点のうち、$A$ でない点を $C$、$l_{B}$ と $\omega_{2}$の交点のうち、$B$ でない点を $D$ とすると、$A,C,X$ はこの順に同一直線上にあり、以下が成立しました。
$$XB=9 BC=2 AD=5$$
このとき、線分 $BD$ の長さを求めてください。
なお、$\omega_{2}$ の半径の方が $\omega_{1}$ の半径より大きいことが保証されます。
$BD$ の長さは互いに素な整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので、$a+b$ を解答してください。