以下の $x$ に関する $100$ 次方程式の(重解を含む)$100$ 個の複素数解を $\alpha_1,\alpha_2,...,\alpha_{100}$ とします.
$$x^{100}+x^{99}+2025x+12=0$$
このとき,以下の値を求めてください.
$$\sum_{k=1}^{100} ({\alpha_k}^{100}+{\alpha_k}^{99})$$
整数で解答してください.
https://x.com/atwr0711/status/2000173940698927172?s=20
こちらの14番の問題と同じです.
円 $\Gamma$ に内接する不等辺三角形 $ABC$ について,その内心を $I$ とし,線分 $BC$ の中点を $M$ とします.線分 $AB,AC$ に接し $\Gamma$ に点 $T$ で内接する円が一意に存在するのでこの中心を $S$ とし,直線 $AI$ が $\Gamma$ と再び交わる点を $V$ とします.また,三角形 $STV$ の外心を $P$ とすると,線分 $IP$ 上の点 $H$ が以下を満たしました.
$$ \angle TAV = \angle HMI, \quad \angle THP = \angle TSV $$さらに, $SV = \sqrt{39}, \ MV = \dfrac{198}{53}$ が成り立つとき,三角形 $ABC$ の面積は互いに素な正の整数 $a,c$ および平方因子を持たない正の整数 $b$ を用いて $\dfrac{a \sqrt{b}}{c} $ と表せるので, $a+b+c$ の値を解答してください.
正の整数を半角で解答.
Aさんは次のゲー厶を行った。
Aさんはコインを持っていない。
2つのボタンがある。片方を押すと$1/3$の確率でコイン、もう片方を押すと$2/3$の確率でコインが得られる。4050回ボタンを押して2025個のコインが得られるようにAさんが最善の行動をした際、Aさんは次の条件を満たした。
①4050回スイッチを押した後コインを2025持っていた。
②2n回スイッチを押した後コインをn個持っている、という状態が0以上3回以下発生した。(1≦n≦2024)
条件①②を同時に満たす確率をある既約分数$\frac{a}{b}$を用いて
$\frac{a}{b}×_{4050}C_{2025}×(\frac{2}{9})^{2025}$
と表せるので、a+bを求めよ。
Sを0以上10以下の自然数の集合として、
P君は、xy座標平面$S^2$の盤面上で、スタートからゴールへ移動する。xが増加する方向が右で、yが増加する方向が上である。6種類の点が存在する。
スタート…(0,0)で、P君が可能な動きはバイオレットと同じである。
ゴール…(10,10)
ネイビー…スタート、ゴール以外の点について、xがyの倍数なら(x,y)はネイビーであり、xがyの倍数でないなら(x,y)はネイビーでない。P君はネイビーに移動できない。
バーミリオン…P君がこの点にいるとき、P君は1つ上へ移動するか、2つ右、1つ下に飛んで移動することができる。
バイオレット…P君がこの点にいるとき、P君は1つ右へ移動するか、2つ上、1つ左に飛んで移動することができる。
アイボリー…P君はアイボリーに移動できない。アイボリーは全部で5個存在する。
ただし、P君が移動して座標平面$S^2$から飛び出てはいけない。
全ての$S^2$に含まれる点のうち、スタート、ゴール、ネイビー以外の点に自由にバーミリオン、バイオレット、アイボリーのいずれかを塗ることができ、その盤面AについてP君がスタートからゴールに行く方法の総数をF(A)とする。
F(A)の最大値をXとし、
全ての盤面Aについて、F(A)の総和をYとし
Yを10007で割った余りをZとして、XとZの10進法における文字列の結合を求めよ。