$3$ つの円が互いに外接し、かつ各円が直線 $l$ に接している。ある円と直線 $l$ との接点を $O$ とし、他の $2$ 円との接点をそれぞれ $A$ $,$ $B$ とする。 $O$ から直線 $AB$ に下ろした垂線の足を $H$ とする。線分 $AB$ の長さを $d$ として、線分 $OH$ の長さを $d$ を用いて表せ。
$$問 題$$
$自然数Nと素数p,q,rが以下の式を満たすとき、Nを求めよ。$
$$
\begin{cases}
N=p^qq^pr\\
p ^q +q ^p=r
\end {cases}
$$
以下の値を素数 $97$ で割った余りを求めてください.
$$\sum_{k=200}^{300}(-4)^{300-k}{}_{2k}\mathrm{C}_{k}\cdot {}_{k}\mathrm{C}_{300-k}\cdot {}_{2k-300}\mathrm{C}_{k-200}$$
上から $i$ 段目 $(1 \leq i \leq 2026)$ に $i$ 個の正整数を並べて三角形を作る方法であって,どの段も総和が $2026$ となるようなものの個数を素数 $2029$ で割ったあまりを解答してください.
正整数 $a$ に対して,$\dfrac{n(n+2)}{a}$ が平方数であるような正整数 $n$ が無限に存在しました.さらに小さい方から $i$ 番目のものを $n_i$ とすると,任意の正整数 $i$ が $n_{i+2}+n_{i}=98n_{i+1}+2n_1$ を満たしました.このとき,$a$ としてありうるものの総和を解答してください.
$\dfrac{51-n}{n-1}$ が平方数となるような整数 $n$ の総和を解答してください.
(13:17追記 $0$ も平方数に含むとします)
$S=\lbrace 0,1, \ldots , 30 \rbrace$ とします.関数 $f:S \rightarrow S$ であって,以下を満たすようなものの個数を $N$ とします.
$N = a \cdot b^c$ であるような正整数 $a,b,c$ について,$a+b+c$ の最小値を解答してください.
平方因子を持たない正整数 $n$ であって,$\dfrac{\phi(n)}{\gcd(n,\phi(n))} = 18$ を満たすものの総和を解答してください.