正$10$角形が半径$31$の円に内接している。
正$10$角形の面積を求めよ。
正$10$角形の面積は互いに素な正整数$a,b$及び正整数$c$と平方因子をもたない正整数$d$を用いて$\dfrac{b\sqrt{c-2\sqrt{d}}}{a}$と表されるので、$a+b+c+d$の値を半角数字で入力してください。
$0$以上$9$以下の整数を順番を区別して$1031$個選び、それらを$a_1,a_2,a_3,…,a_{1030},a_{1031}$とする。(重複も許す)
$a_1+a_2+a_3+…+a_{1030}+a_{1031}$が$9$で割り切れない奇数となるような組$(a_1,a_2,a_3,…,a_{1030},a_{1031})$の個数を求めよ。
条件を満たす組$(a_1,a_2,a_3,…,a_{1030},a_{1031})$の個数を$N$個とします。$N$の各桁の和を半角数字で入力してください。
$f^{1031}(x)=f(x)$を満たし、かつ$f(1031)=1031$である多項式関数$f(x)$をすべて求めよ。
ただし、$f^{1031}(x)=\underbrace{f(f(\cdots f}_{1031個}(x)\cdots))$とします。
簡単な証明もお願いします。
$x,y$を非負整数とする。
$10x+31y=1031$
を満たす組$(x,y)$をすべて求めよ。
誤って第1問と第3問の答えを逆で設定していました。大変申し訳ございません。
組$(x,y)$について、$x+y$の総和を半角数字で入力してください。
カボチャ$10$個とキャンディ$31$個を円周上に並べる方法は何通りあるか。
ただし、カボチャとキャンディはどちらも区別できない。
半角数字で入力してください。
すべての項が素数であるような数列 $a_1, a_2, …, a_N (a_1 \le a_2 \le … \le a_N)$ であり,$a_1^2+a_2^2+…+a_N^2=999$ を満たすもののうち,$N$ が最小のものすべてについて,$a_1+a_2+…+a_N$ の総和を解答せよ.
三角形 $ABC$ について,外接円と $\angle A$ の二等分線が再び交わる点を $M$,線分 $AM$ と $BC$ の交点を $D$,$\angle AMC$ の二等分線と線分 $BC,AC$ の交点をそれぞれ $E,F$ とすると,$DE=9, AF=16, AB=20$ が成立した.線分 $BC$ の長さを求めよ.
$900$ 個の白丸が円形に並んでいる.ここから次の条件を満たすようにいくつかの丸 ($1$ つ以上) を黒く塗る方法は何通りあるか?
$x^{100}+2x^{80}+4x^{60}+4x^{40}+2x^{20}+1=0$ の複素数解を $a_1, a_2, …, a_{100}$ とするとき,$$\sum_{k=1}^{100} \dfrac{a_k^3+2a_k^2+3a_k+4}{a_k^3+a_k^2+a_k+1}$$ の値を求めてください.