数学の問題一覧

カテゴリ
以上
以下

1分野 問5

nflight11 採点者ジャッジ 難易度:
17日前

0

問題文

実数全体で定義された実関数 $f$ は二度微分可能であり, $f^{\prime\prime}$ が連続である. そしてすべての実数 $x$ に対して $f^{\prime}(x) > 0, f^{\prime\prime}(x) < 0$ である.

このとき, 任意の正の実数 $t$ に対して次の式が成立することを証明しなさい.

$$\left|\int_0^t\cos{f(x)}dx\right| \le \frac{2}{f^\prime (t)}$$

解答形式

証明過程をできるだけ詳しく作成してください.

17日前

11

問題文

$37^{2024}$ の十の位と一の位の数をもとめてください.

解答形式

$37^{2024}$ の十の位と一の位の数を空白で区切って1行に入力してください.
例えば $37^{2024}$ の十の位が $0$ で一の位が $2$ の場合は 0 2 のように入力してください。


問題文

次の式を満足す実数 $N$ を求めなさい.

$$\sum_{k=1}^{2024}(2025-k) \cdot 2024^k \cdot 2025^{2024-k} = 2024^N$$

解答形式

$N$ をそのまま入力してください.

1分野 問2

nflight11 採点者ジャッジ 難易度:
17日前

0

問題文

3次元座標空間で式 $4z^2=x^2+y^2-1$ を満たす点 $(x,y,z)$ の集合からなる曲面を $S$ とします. 点 $P(1,2,1)$ を通る直線のうち, 正確に二つが $S$ に完全に含まれることを示してください.

またこの二つの直線が成す鋭角を $\theta$ とする時, $\cos\theta$ を求めなさい.

解答形式

最初の行に $\cos\theta$ を入力してください.
2列目は空白にしておいてください.
3行目から証明過程をできるだけ詳しく作成してください.


問題文

次の行列 $A$ に対して等式 $A^5 = aA^2+bA+cI$ が成立するる実数 $a, b, c$ を求めなさい. ただし, $I$ は $3\times3$ 単位行列である.
$$A=\begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix}$$

解答形式

$a, b, c$ を空白で区切って1行に入力してください. 例えば $(a,b,c)=(7,15,92)$ であれば解答として 7 15 92 を入力してください.

角の3等分線と円

Calculator 自動ジャッジ 難易度:
17日前

2

問題文

内接五角形$ABCDE$があり、$∠BAC$=$∠CAD$=$∠DAE$である。
また、$AB=12$、$AC=17$、$AD=20$である。
このとき、$AE$の長さは互いに素な正の整数$p,q$を用いて$\frac{p}{q}$と表せるので$p+q$を解答してください。

解答形式

半角で解答してください。

A

nmoon 自動ジャッジ 難易度:
19日前

30

問題文

2つの正整数 $a,b$ の組のうち,最小公倍数が最大公約数の $10$ 倍となり,$a+b=154$ を満たすもの全てについて,$ab$ の総和を求めてください.

解答形式

非負整数で解答してください.

B

nmoon 自動ジャッジ 難易度:
19日前

26

問題文

3種類の文字 $A,B,C$ を用いて以下の条件を満たした長さが5の文字列は全部でいくつあるか.

  • $A$ の右隣にある文字は $B$ ではない.

  • $B$ の右隣にある文字は $C$ ではない.

解答形式

非負整数で解答して下さい.

D

nmoon 自動ジャッジ 難易度:
19日前

10

問題文

4次方程式 $x^4-4x^3-21x^2-8x+4=0$ の4つの相異なる実数解を,小さいものから順に $a_{1},a_{2},a_{3},a_{4}$ とします.このとき,以下の値を求めてください:

$$\displaystyle\frac{1}{a_{1}^2-a_{1}a_{2}+a_{2}^2}+ \displaystyle\frac{1}{a_{3}^2-a_{3}a_{4}+a_{4}^2} $$

解答形式

互いに素な2つの正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表されるので,$a+b$ を求めてください.

C

nmoon 自動ジャッジ 難易度:
19日前

7

問題文

三角形 $ABC$ の外心を $O$,垂心を $H$,外接円を $\Gamma$ とする.そして,以下のように点を4つとる.

  • 直線 $BH$ と $\Gamma$ との交点を $P(\not=B)$ とする.
  • 直線 $PO$ と $\Gamma$ との交点を $Q(\not=P)$ とする.
  • 直線 $QH$ と $\Gamma$ との交点を $R(\not=Q)$ とする.
  • 直線 $RO$ と $\Gamma$ との交点を $S(\not=R)$ とする.

このとき,3点 $ C,H,S$ が同一直線上にあった.

$$AH=17 , AO=11$$

のとき,三角形 $ABC$ の面積を求めてください.

解答形式

答えを2乗した値は,互いに素な2つの正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表されるので,$a+b$ を求めてください.

大きい数の位の値

noname 自動ジャッジ 難易度:
19日前

3

問題文

$1998^{2024}$の下$2$桁を求めよ。

解答形式

1行目に半角整数で入力してください。

OMCBにありそう

sha256 自動ジャッジ 難易度:
19日前

16

問題文

初項が$1(a_1=1)$の数列{$a_n$}は、任意の正整数$n$に対し
$$
a_{n+1}^3-10a_na_{n+1}^2+31a_n^2a_{n+1}-30a_n^3=0
$$
を満たしている。
$a_{60}$としてあり得る値すべての総積を求めたい。
ただし答えは非常に大きいので、答えの正の約数の個数を1000で割ったあまりを答えよ。

解答形式

$0$以上$999$以下の整数を半角英数字で入力してください。

(11/7:一部問題文を修正)