三角形 $ABC$ について,外接円と $\angle A$ の二等分線が再び交わる点を $M$,線分 $AM$ と $BC$ の交点を $D$,$\angle AMC$ の二等分線と線分 $BC,AC$ の交点をそれぞれ $E,F$ とすると,$DE=9, AF=16, AB=20$ が成立した.線分 $BC$ の長さを求めよ.
すべての項が素数であるような数列 $a_1, a_2, …, a_N (a_1 \le a_2 \le … \le a_N)$ であり,$a_1^2+a_2^2+…+a_N^2=999$ を満たすもののうち,$N$ が最小のものすべてについて,$a_1+a_2+…+a_N$ の総和を解答せよ.
鋭角三角形 $ABC$ について,垂心を $H$,線分 $BC$ の中点を $M$,直線 $BH$ と $AC$,$CH$ と $AB$ の交点をそれぞれ $E, F$ とし,直線 $AH$ と三角形 $ABC$ の外接円が再び交わる点を $T$,直線 $TM$ と三角形 $ABC$ の外接円の交点を $S$,直線 $BS$ と $HC$ の交点を $X$,直線 $TM$ と $AC$ の交点を $Y$ とすると,
$$BH=HE, AH=9, XY=7$$
が成立した.このとき,線分 $BC$ の長さの二乗を解答せよ.
$1+2+3+…+20$ 個の白い円を下の図(図では $1+2+3+4$ の場合を表している)のように正三角形状に並べる.次の条件を全て満たすように,いくつかの円を黒く塗る.ただし,段とは水平方向に並ぶ円の集合を指す.
上から $k$ 段目 $(1\leq k\leq 20)$ 段目には $k$ 個の円がある.条件を全て満たす塗り方のうち,黒い円の個数が最も少なくなるような塗り方は何通りあるか.ただし,回転や裏返しで一致する塗り方も異なるものとして考えるものとする.

$x^{100}+2x^{80}+4x^{60}+4x^{40}+2x^{20}+1=0$ の複素数解を $a_1, a_2, …, a_{100}$ とするとき,$$\sum_{k=1}^{100} \dfrac{a_k^3+2a_k^2+3a_k+4}{a_k^3+a_k^2+a_k+1}$$ の値を求めてください.
$900$ 個の白丸が円形に並んでいる.ここから次の条件を満たすようにいくつかの丸 ($1$ つ以上) を黒く塗る方法は何通りあるか?
数列$\ a_{n}$は以下のように定義されます.
$$a_{1}=1,a_{n+1}=2a_{n}+2\cos\frac{n\pi}{3}$$
このとき,$$\displaystyle\sum_{k=1}^{50000}a_{k}$$の正の約数の個数を解答してください.
整数で解答してください.
正の整数 ${n}$ に対して定義される数列 ${a_n}$ が
$${a_1=2, a_2=-4, a_{n+2}-2a_{n+1}+4a_n=0}$$
を満たしている。
${|a_{2025}|}$ の正の約数の個数を求めよ。
整数で入力してください
整数 ${n}$ に対して定義される数列 ${a_n}$ が
$${a_0=2, a_1=4, a_{n+2}-4a_{n+1}+a_n=0}$$
を満たしている。
$${a_{2026}-a_{-2026}}$$
を求めよ。
整数で入力してください