四面体$ABCD$は以下を満たす.
$AB=AC=AD=13,BC=6,CD=8,BD=10$
このとき四面体$ABCD$の体積を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
$AB=15,AC=24$の鋭角三角形$ABC$があり内心を$I$,垂心を$H$とすると
$4$点$BCHI$は同じ円 $Γ$上にあった.このとき円 $Γ$の半径の長さの$2$乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
$AB=60,BC=70,CA=80$の三角形$ABC$があり,内心を$I$としたとき
$AI$の長さを解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
すべての正整数 $n$ に対して $a_{n+1}=a_{n}+a_{n+2}$ を満たす数列 $\{a_n\}$ に対して、次の式が成立する。
$$\sum_{n=1}^\infty \frac{a_n}{2^n}=1998, \sum_{n=1}^\infty \frac{a_{3n}}{3^n}=1106$$
この時、$|a_{1998}a_{1106}|$を求めよ。
答えをそのまま入力しなさい。
三角形$ABC$があり,また点$C$を通る点$B$で$AB$に接する円$O$がある.円$O$上でありかつ
三角形$ABC$の内部に$BD=CD$となる点$D$をとり$AC$と円$O$の交点のうち$C$でないものを$E$とおくと
$AB=15,BC=10,DE=16$であった.このとき$AC$の長さの$2$乗は互いに素な正整数$a,b$によって$\frac{a}{b} $と表されるので$a+b$の値を解答してください.
ただし点$A,C,E$は$ACE$の順に一直線上に並んでいるものとする.
答えは正の整数値となるので,その整数値を半角で入力してください.
$n$を自然数とします。$n$個の複素数からなる組$z(n)=(z_1,z_2,z_3,……z_n)$について、$z(n)$の要素からの異なる$i$個の選び方全てについてそれら(選んだ$i$個の要素)の総積を求め、それら(全ての選び方)の総和を$S(z(n),i)$とします。ある組$z(2024)$が存在して$$S(z(2024),1)=S(z(2024),2)=S(z(2024),3)=……S(z(2024),2022)=0,S(z(2024),2024)=-2$$を満たすとき、$$(z_1)^{2024}+(z_2)^{2024}+(z_3)^{2024}+……+(z_{2024})^{2024}$$の値は実数になるのでそれを計算して答えてください。
値を1行目に半角で入力してください。
$A$ さんを含む $10$ 人の選手がゲームの格ゲー大会総当たり形式で行いました.
$A$ さん以外の $9$ 人の選手は以下の条件を満たしているとき, $A$ さんの勝利した回数としてあり得るものの総和を求めてください.
しかし,引き分けは考えないものとします.
非負整数を半角数字で答えてください.