数学の問題一覧

カテゴリ
以上
以下

Furret sequence 1

bzuL 自動ジャッジ 難易度:
6月前

12

問題文

「オ」「タ」「チ」の $3$ 種類の文字で構成される長さ $n$ の文字列に対して,オオタチ度を,その文字列の中で連続する $4$ 文字が「オオタチ」となっているようなものの数と定義します.
 たとえば「チタタオオタチオタチタオオオタチ」のオオタチ度は $2$ で,「チタオオチタオオチタオオ」のオオタチ度は $0$ です.
 長さが $n$ で構成する文字が $3$ 種類のため,文字列としては $3^n$ 種類のものが考えられます.これらのオオタチ度の相加平均を $f(n)$ とします.
 $f(n)$ が正整数になる最小の $n$ を解答してください.

解答形式

半角数字で解答してください.

ボツ

seven_sevens 採点者ジャッジ 難易度:
6月前

0

$$\int_0^{\frac{1}{3}}\pi(-\frac{1}{2}x+1)^2dx$$

ボツ問題

peparoni 自動ジャッジ 難易度:
6月前

5

問題文

以下の条件をともに満たす $12$ 桁の正整数 $M$ はいくつありますか?

  • $M$ を $3$ 桁ずつに区切って得られる $4$ つの正整数を左から $A,B,C,D$ として定めると,$\lvert A - B + C - D\rvert$ は $11$ の倍数かつ $13$ の倍数となる.
  • $M$ を $4$ 桁ずつに区切って得られる $3$ つの自然数を左から $E,F,G$ として定めると,$\lvert E - F + G\rvert$ は $137$ の倍数となる.

ただし,$M,A,E$ の最高位の数字は $0$ でないものとします.

解答形式

条件を満たす $12$ 桁の正整数 $M$ の個数を,半角数字で余分な空白や改行を入れずに解答してください.

幾何問題12/12

miq_39 自動ジャッジ 難易度:
6月前

5

問題文

三角形 $ABC$ の辺 $AB , AC$ (端点を除く)上にそれぞれ点 $P , Q$ があり,直線 $BC , PQ$ は,半直線 $BC$ 上の点 $R$ で交わっています.また,線分 $BC , PQ$ 上にそれぞれ点 $M , N$ があり, $\dfrac{BM}{MC} = \dfrac{PN}{NQ} = \dfrac{BR}{RC}$ を満たしています.いま,直線 $AN$ と $\triangle ABC$ の外接円の交点のうち,$A$ でない方を $X$ としたところ,$\angle MNR = \angle MXR = 90^{\circ}$,$\angle BXM = 63^{\circ}$ がそれぞれ成り立ちました.このとき,$\angle BAC$ の大きさを度数法で求めてください.

解答形式

半角数字で解答してください.


問題文

$$\sum_{k=1}^{n}x^{-2k} =0 [n \in {\mathbb N}]$$
というxの方程式がある。
このとき、以下の問いに答えよ。
なお、この方程式には実数解が存在しない。
1)実数解を持たないことを示せ。(証明必須)
2)解の個数を示せ。(証明不要)
3)n=4の時の解の全てを示せ。(証明不要)

解答形式

1)には証明を、
2)には数値もしくは数式を、
3)には直交座標表示もしくは三角関数による極座標表示を推奨する。

1)自明
2)1729n+65536
3)x=1+3i,3(cosπ/3+isinπ/3)
もちろんこれらが答えでは無い。

メモ

2)を解く際は解の式を作成するべきだろう。
wolfram alphaに頼ることはおすすめしない。

商と余り

miq_39 自動ジャッジ 難易度:
6月前

10

問題文

自然数 $n$ に対し,次のように定められた数列 $\{a_{n}\},\{b_{n}\},\{c_{n}\}$ がある:

  • $a_{1}=2023^{2023}$
  • $a_{n}$ を $120$ で割った商が $b_{n}$,余りが $c_{n}$
  • $a_{n+1}=b_{n}+c_{n}$

このとき,$\lim_{n\to\infty}a_{n}$ を求めよ.

解答形式

半角数字で解答してください.

組み合わせ問題1

natsuneko 自動ジャッジ 難易度:
6月前

5

問題文

赤玉 $20$ 個と青玉 $21$ 個の計 $41$ 個の玉を横一列に並べます. このとき, 左から $1$ 番目から $20$ 番目までの玉の中に含まれる赤玉の個数を $R$, 青玉の個数を $B$, 左から $22$ 番目から $41$ 番目までの玉の中に含まれる赤玉の個数を $r$, 青玉の個数を $b$ とします. 玉の並べ方は全部で $ \binom{41}{20}$ 通りありますが, その全ての並べ方に対する $Rb + Br$ の値の相加平均を求めて下さい.

解答形式

答えは互いに素な正整数 $a,b$ を用いて $\cfrac{b}{a}$ と表されるため, $a+b$ の値を解答して下さい.

見掛け倒し

mahiro 自動ジャッジ 難易度:
6月前

23

問題文

$2^{20}!!$ は $2$ で何回割り切れますか?

解答形式

半角数字でお答え下さい。
計算機はご自由にお使いください。

幾何問題11/22

miq_39 自動ジャッジ 難易度:
6月前

5

問題文

円 $\omega$ 上に相異なる $2$ 点 $A,B$ がある.ただし,弦 $AB$ は $\omega$ の直径ではない.$A,B$ における $\omega$ の接線をそれぞれ $l,m$ とする.劣弧 $AB$ 上(端点を除く)に点 $P$ をとり,$P$ を通り $l$ に平行な直線と $\omega$ の交点であって,$P$ でないものを $C$ とし,$P$ を通り $m$ に平行な直線と $\omega$ の交点であって,$P$ でないものを $D$ とする.$l$ と直線 $BC$ の交点を $E$,$m$ と線分 $AD$ の交点を $F$ とする.また,線分 $AF$ と線分 $BE$ の交点を $X$,線分 $CF$ と線分 $DE$ の交点を $Y$ とする.$AB=\sqrt{69}$,$AC=3$,$BD=6$ がそれぞれ成り立っているとき,線分 $XY$ の長さは,互いに素な正整数 $a,c$ および平方因子を持たない $2$ 以上の整数 $b$ を用いて $\dfrac{a\sqrt{b}}{c}$ と表されるので,$a+b+c$ の値を求めよ.

解答形式

半角数字で解答してください.

SMC100-94

MARTH 自動ジャッジ 難易度:
7月前

8

$100\times 100$ のマス目があります. 上から $i$ 行目, 左から $j$ 列目のマスを $100(i-1)+j$ と呼ぶことにします. SMC 君は一般的な $6$ 面サイコロを $10000$ 回振り, $i$ 回目に振って出た目をマス $i$ に書き込みます. このとき, 以下の条件を満たす確率を $p$ とするとき, $6^{10000}p$ は整数になるので, 素数 $3299$ で割った余りを求めてください.

  • 任意の行について, その行のマスに書かれた整数の総和は偶数.
  • 任意の列について, その列のマスに書かれた整数の総和は $3$ の倍数.

BMC002-E

MARTH 自動ジャッジ 難易度:
7月前

12

直方体 $ABCD-EFGH$があり, $AB=\sqrt{2},AD=2023\sqrt{2},AE=2024\sqrt{2}$ です. 三角形 $BDE$ の面積を求めてください.

SMC100-25

MARTH 自動ジャッジ 難易度:
7月前

18

正整数 $m$ に対して, $m$ の正の約数全ての相加平均を $f(m)$ とします.このとき以下を満たす $m$ の総和を求めてください.
$$f(m)=\frac{m}{2}$$