数学の問題一覧

カテゴリ
以上
以下

[A] 東大レベル!

masorata 自動ジャッジ 難易度:
2年前

65

問題文

次の条件(a), (b)をともに満たす自然数($1$ 以上の整数)$\rm{A}$ の最小値を求めよ。

(a) $\rm{A}$ は連続する $3$ つの自然数の和である。

(b) $\rm{A}$ を $10$ 進法で表したとき、$1$ が連続して $9$ 回以上現れるところがある。

解答形式

半角数字のみで1行目に入力せよ。

[F] 歪んだバランス

masorata 自動ジャッジ 難易度:
2年前

10

問題文

相異なる正の実数 $a,b,c$ が $ab^2(1-b)=bc^2(1-c)=ca^2(1-a)$ を満たして動くとき、$(1-a)(1-b)(1-c)$ の最大値は

$$
\displaystyle \frac{\fbox{アイウ}+\fbox{エオ}\sqrt{\fbox{カ}}}{\fbox{キクケ}}
$$

である。

解答形式

ア〜ケには、0から9までの数字、または-(マイナス)が入る。文字列「アイウエオカキク」を全て半角で1行目に入力せよ。ただし、それ以上約分できない形で、かつ根号の中身が最小になるように答えよ。

求面積問題11

Kinmokusei 自動ジャッジ 難易度:
2年前

4

問題文

【解答形式に注意!】

半径と中心角が等しい扇形に正方形が内接しています。青い正方形と赤い正方形の面積の大小関係を調べてください。
ただし、同じ印をつけた部分の長さは等しいです。

解答形式

(青の面積) > (赤の面積) なら 1
(青の面積) = (赤の面積) なら 2
(青の面積) < (赤の面積) なら 3
を、半角数字で解答してください。

求値問題2

Kinmokusei 自動ジャッジ 難易度:
2年前

5

問題文

$△ABC$は鋭角三角形とします。次に、$A,B,C$から$BC,CA,AB$におろした垂線の足をそれぞれ$X,Y,Z$とし、$△ABC,△XYZ$の内接円の半径をそれぞれ$r,r'$とします。このとき、次の式の最小値を求めてください。
$$
\frac{r}{r'}\cos{\frac A2}\cos{\frac B2}\cos{\frac C2}
$$

解答形式

$$
\frac{r}{r'}\cos{\frac A2}\cos{\frac B2}\cos{\frac C2}\geq\frac{[ア]\sqrt{[イ]}}{[ウ]}=(最小値)
$$
となります。$[ア]+[イ]+[ウ]$を半角数字で解答してください。
ただし、$[ア],[イ],[ウ]$には自然数が入ります。また、分数部分は既約分数に、根号内の数字は最小となるようにしてください。

xsinxを含む定積分

zyogamaya 自動ジャッジ 難易度:
2年前

3

問題文

$I=\displaystyle \int_{0}^{\pi}\frac{x\sin x}{\sin^{2\cdot2}x -2\sin^2x+2} dx$を求めよ。

解答形式

答えは、
$\displaystyle I=\frac{\pi}{a\sqrt{b}}(c\log(\sqrt{d}+e)+\pi)$の形になります。($a,b,c,d,e$は1桁の自然数)
「abcde」(5桁の自然数)を入力してください。なお、センター、共通テスト形式で数字を埋めてください。

極値

zyogamaya 自動ジャッジ 難易度:
2年前

3

問題文

関数$f(x)=(xe^{x-1}+x^2+2x+2)e^{-x}$の極大値を求めよ。

解答形式

半角数字またはTeXで入力してください。分数の場合は「a/b」などと入力可能です。
例:
答えが$\displaystyle\frac{e^2}{7}$の場合、「e^2/7」と入力する。

答えが$\displaystyle\frac{4e^3+26}{e^4}$の場合、「(4e^3+26)/e^4」と入力する。

2曲線で囲まれる部分の面積

zyogamaya 自動ジャッジ 難易度:
2年前

6

問題文

2曲線
$
\begin{cases}
y=2x^3+10x^2+12x+7 \newline
y=x^2+5x+13
\end{cases}
$
で囲まれる部分の面積$S$を求めよ。

解答形式

答えは
$\displaystyle\frac{[abc]}{[de]}$
という形になります。($a,b,c,d,e$は1桁の自然数)
センター、共通テスト方式で答えてください。
例:
$S=\displaystyle\frac{765}{13}$のときは「76513」と入力する。

求面積問題10

Kinmokusei 自動ジャッジ 難易度:
2年前

4

問題文

図中の赤い線分の長さが10のとき、青で示した四角形の面積を求めてください。

解答形式

半角数字で解答してください。

因数分解

zyogamaya 自動ジャッジ 難易度:
2年前

1

問題文

$x^4+y^4+z^4+w^4+(x^2+y^2+z^2+w^2)(xy+xz+xw+yz+yw+zw)+4xyzw$
を因数分解せよ。

解答形式

TeXで入力してください。項の順番に関しては辞書式順で入力してください。字数の高い因数を先に書いてください。
例1:
$(x^2+y^2+z^2+w^2)(x+y+z+w)$と答えるには
(x^2+y^2+z^2+w^2)(x+y+z+w)を入力してください。
例2:
$x,y,z,w$から重複せず3文字を選び、かけ合わせた項4つを辞書式順に並べると
$xyz,xyw,xzw,yzw$

求値問題

Kinmokusei 自動ジャッジ 難易度:
2年前

3

問題文

三角形の3つの内角の大きさを$A,B,C$とします。このとき、次の式の最小値を求めてください。
$$
\frac{1-\cos A}{\cos B+\cos C}+\frac{1-\cos B}{\cos C+\cos A}+\frac{1-\cos C}{\cos A+\cos B}
$$

解答形式

最小値は$\frac {[ア]}{[イ]}$となります。$[ア]+[イ]$を解答してください。
ただし、$[ア],[イ]$にはそれぞれ自然数が入り、その最大公約数は$1$とします。

求長問題8

Kinmokusei 自動ジャッジ 難易度:
2年前

5

問題文

2つの直角二等辺三角形が、それらの斜辺が交点をもつように配置されています。青い線分の長さが10、Xで示した角が鈍角のとき、赤い線分の長さを求めてください。
ただし、同じ色で示した線分の長さはそれぞれ等しいです。

解答形式

(赤い線分の長さ)$=[ア]\sqrt{[イ]}$ となります。
ただし、$[ア],[イ]$にはそれぞれ自然数が入ります。$[ア]+[イ]$を解答してください。また、$[イ]$に入る自然数はできるだけ小さくしてください。
例: (赤い線分の長さ)$=3\sqrt5$ なら、$3+5\rightarrow8$と解答

平方数

zyogamaya 自動ジャッジ 難易度:
2年前

2

問題文

$x,y$を自然数とする。$x^2+8y$と$y^2+8x$がともに平方数になるような$x,y$の組$(x,y)$をすべて求めよ。

解答形式

例えば、$(x,y)=(1,2),(13,4),(51,16)$と答えたい場合は

12
134
5116

と入力してください。解の組は$x$の値が小さい順に並べてください。$x$の値が同じで$y$の値が異なる場合は$y$の値が小さい方を先に入力してください。