数学の問題一覧

カテゴリ
以上
以下

絶対値

y 自動ジャッジ 難易度:
8月前

0

$$
f(m)=|\quad{\sqrt{{m}^{log_{3}{9}}+log_{m}{m}+2log_{4}{4}^m}}|\\について、m<-1のとき、f(3)を求めて下さい。
$$
$$
(1)-4(2)-3(3)-2(4)-1
$$

微分・積分(11)

y 自動ジャッジ 難易度:
8月前

2

$$
\int_0^{log_359049}\quad{\sqrt{({m}^2+18m+81})}dm\\について積分して下さい。
$$

指数・対数(5)

y 自動ジャッジ 難易度:
8月前

0

$$
方程式3^\sqrt{{m}^2log_xx^{{log_28}^{log_327}}}=\frac{1}{\sqrt{3}}\\について、mの値を求めて下さい。
$$
$$
(1)-\frac{1}{3}(1)-\frac{1}{6}(1)-\frac{1}{9}(1)-\frac{1}{12}
$$

微分・積分(10)

y 自動ジャッジ 難易度:
8月前

0

$$
\int_{0}^{cos60゜}\sqrt{{m}^2log_xx^{{log_216}^{log_381}}}dm\\について積分して下さい。
$$
$$
(1)\frac{1}{2}(2)\frac{1}{3}(3)\frac{1}{4}(4)\frac{1}{5}
$$

微分・積分(9)

y 自動ジャッジ 難易度:
8月前

0

$$
f(m)={\int_{0}^{log_{x}x}}^{\sqrt{m^2+4m+4}}(cos60゜x)dx\\について積分をして、f'(m)を答えて下さい。
$$
$$
$$
(1)\begin{cases}\frac{{m}^2+5m+4}{3},\frac{1}{3}(m+4)\end{cases}(2)\begin{cases}\frac{{m}^2+4m+3}{3},\frac{2}{3}(m+3)\end{cases}(3)\begin{cases}\frac{{m}^2+3m+2}{3},\frac{1}{3}(m+2)\end{cases}(4)\begin{cases}\frac{{m}^2+2m+1}{3},\frac{2}{3}(m+1)\end{cases}
$$

微分・積分(8)

y 自動ジャッジ 難易度:
8月前

16

$$
f(m)=\int_0^{\sqrt{m^2+4m+4}}log_{2}{8}^xdx\\について積分し、f(4)を答えて下さい。
$$

微分・積分(7)

y 自動ジャッジ 難易度:
8月前

0

$$
\int_{0}^{cos60°}log_{2}{8}^{\sqrt{\sqrt{\sqrt{{m}^8+8{m}^7+28{m}^6+55{m}^5+54{m}^4+41{m}^3+43{m}^2+23{m}+1}}}}dm\\について積分して下さい。
$$
$$
(1)\frac{11}{6}(2)\frac{13}{7}(3)\frac{15}{8}(4)\frac{17}{9}
$$

展開図

Fuji495616 自動ジャッジ 難易度:
8月前

6

問題文

図のような展開図を組み立てできる立体の体積は何㎤ですか。ただし、図は辺の長さが等しい正三角形と正方形と正六角形を組み合わせた図形で、正方形の面積は18㎠です。

解答形式

半角数字で入力してください。
例)10

微分・積分(6)

y 自動ジャッジ 難易度:
8月前

49

$$
\int_{0}^{log_{2}{1024}}\quad({\sqrt{{m}^{2}+4m+4})}dm\\について積分して下さい。
$$

微分・積分(5)

y 自動ジャッジ 難易度:
8月前

1

$$
\int_{0}^{log_{2}{4}}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{m}^{1048576}}}}}}}}}}}}}}}}}}}}dm\\を積分して下さい。
$$

微分・積分(4)

y 自動ジャッジ 難易度:
8月前

0

$$
\int_{0}^{log_{2}{8}}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{{m}^{1024}}}}}}}}}dmを\\積分して下さい。
$$
$$
(1)\frac{241}{2}(2)\frac{243}{3}(3)\frac{245}{5}(4)\frac{247}{6}
$$

指数・対数(4)

y 自動ジャッジ 難易度:
8月前

3

$$
(\frac{1}{\sqrt{2}})^{mlog_{2}8^{log_{3}27}}=1024のmの値を答えて下さい。\\このとき、解より小さい値で最も小さい整数を答えて下さい。
$$