数学の問題一覧

カテゴリ
以上
以下

第4問

sulippa 採点者ジャッジ 難易度:
7月前

0

問題

x,y,z を正の整数とするとき、方程式
$$ \frac{x^2+y^2+z^2}{xyz+1}=k $$
は正の整数 k の値をとるとする。

(1)この条件を満たす$(x,y,z)$のうち、少なくとも1つが$1$であるとき、$k=1+m^2$(mは自然数)とかけることを示せ。
(2) k=5 とする。方程式 $\frac{x^2+y^2+z^2}{xyz+1}=5$ を満たす正の整数解 (x,y,z) で、$x \le y \le z$ を満たすものを考える。これらの解の中で、比の値 $\frac{z}{y}$ が $9.8$ より大きくなるような解のうち、$z$ の値が最小となるものを求めよ。

解答形式

(1)は簡潔な証明と、
(2)はある程度解答の方針を示した上で
解を答えて下さい。

第1問

sulippa 採点者ジャッジ 難易度:
7月前

1

問題文

$p$ は $gcd(p, 10) = 1$ を満たす $p > 1$ の素数とする。
$\frac{1}{p}$ の小数表示における循環節を $C_1C_2...C_L$ とし、その長さを $L$ とする (すなわち $L = ord_p(10)$ である)。
循環節を構成する数字の並びから、以下の2つの整数を定義する。
1. $N_0 = C_1C_2...C_L$ (これを10進法の整数として評価した値)
2. $N_1 = C_2C_3...C_LC_1$ (同様に10進法の整数として評価した値)
また、$C_1 = \lfloor \frac{10}{p} \rfloor$ (すなわち $\frac{1}{p}$ の小数第1位の数字) とする。

以下の2つの条件 (A) と (B) を同時に満たすような、全ての組 $(p, q)$ を求めよ。
(A) $N_1 = qN_0$ が成り立つ。ここで $q$ は $q \ge 2$ を満たす整数である。
(B) $L = q - C_1$ が成り立つ。

解答形式

ある程度解答の方針を示した上で、
解を答えて下さい

PDC005 (B)

poinsettia 自動ジャッジ 難易度:
7月前

32

$\angle B=90^{\circ}$ なる直角三角形 $ABC$ について,線分 $AC$ の中点を $M$ とし,内部に $PM\parallel BC$ なるように点 $P$ を取り,三角形 $BPM$ の外接円と三角形 $ABC$ の外接円が再び交わる点を $X$ とする.$AP=5, PM=8, MA=10$ が成り立っているとき,線分 $PX$ の長さは互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.

PDC005 (D)

poinsettia 自動ジャッジ 難易度:
7月前

74

$2$ 番目に小さい正の約数と $3$ 番目に小さい正の約数の和が $12$ であるような,正の約数が $3$ つ以上ある正の整数のうち,$100$ 以下のものの総和を求めよ.

PDC005 (C)

poinsettia 自動ジャッジ 難易度:
7月前

53

$(i,j) (0\leq i,j\leq 2)$ の $9$ 個の格子点がある.いま,この中から $n$ 点をうちどの $3$ 点も直角三角形を成さないように選ぶことができる最大の正の整数 $n$ を $N$ とし,$n=N$ のときの条件を満たす選び方を $M$ 通りとするとき,$M^N$ を解答せよ.

PDC005 (A)

poinsettia 自動ジャッジ 難易度:
7月前

55

各位の和が $14$ であるような $2$ 番目に小さい正の整数を求めよ.

PDC005 (E)

poinsettia 自動ジャッジ 難易度:
7月前

41

正の整数について定義され,$1$ 以上 $100$ 以下の整数値を取る関数 $f$ であり,任意の正の整数 $x,y$ について
$$f(x)+f(y)=f(x^2y)+f(4x)$$
を満たすものすべてについて,$(f(1), f(2),…, f(100))$ としてありうる組が $N$ 個存在するとき,$N$ が $2$ で割り切れる回数を求めよ.

PDC005 (F)

poinsettia 自動ジャッジ 難易度:
7月前

13

対角線同士が $E$ で交わっている凸四角形 $ABCD$ について,
$$BA=9, AD=6, DC=7, \angle AED = \angle ADC = \angle DCB$$
が成り立っているとき,線分 $BC$ の長さは整数 $a,b$ を用いて $a+\sqrt b$ と表せるので,$a+b$ を解答せよ.

四面体上の三角形と重心

nps 自動ジャッジ 難易度:
7月前

0

体積が1である四面体OABCの辺OA, OB, OC上をそれぞれ点P, Q, Rが別々に動くとき,三角形PQRの重心Gが動き得る領域の体積を求めよ。
半角で入力し,分数は 分子/分母 の形で入力してください。

KOTAKE杯005(A)

MrKOTAKE 自動ジャッジ 難易度:
7月前

33

問題文

三角形 $ABC$ の内部に点 $D$ をとると $DB=DC,AC=AD, \angle DBC=19^{\circ}, \angle ABD=30^{\circ} $ が成立したので $\angle BAC$ の大きさを度数法で解答せよ.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.
Writer: pomodor_ap

KOTAKE杯005(D)

MrKOTAKE 自動ジャッジ 難易度:
7月前

16

問題文

$AB=5, AC=8, \angle A=60^{\circ}$ なる三角形 $ABC$ について,外接円の $A$ を通らない弧 $BC$ の中点を $M$ とする.相異なる $4$ 点 $P,Q,B,C$ がこの順で同一直線上に並び,$\angle APB:\angle MPB=\angle AQB:\angle MQB=3:1$ が成立した.線分 $PQ$ の長さは互いに素な正の整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.
Writer: pomodor_ap