数学の問題一覧

カテゴリ
以上
以下

KOTAKE杯001(G)

MrKOTAKE 自動ジャッジ 難易度:
11月前

40

問題文

円に内接する四角形$ABCD$があり,対角線の交点を$P$とすると$AB=AD=24,AP=16$であった.
このとき$CP$の長さを解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

200N

MARTH 自動ジャッジ 難易度:
18月前

40

$0$ 以上 $6$ 以下の整数からなる組 $(a_1,a_2,a_3,a_4,a_5)$ のうち以下を満たすものの個数を求めてください.
$$(a_1a_2)^3+(a_2a_3)^3+(a_3a_4)^3+(a_4a_5)^3+(a_5a_1)^3\equiv0\pmod{7}$$

PDC005 (E)

pomodor_ap 自動ジャッジ 難易度:
49日前

40

正の整数について定義され,$1$ 以上 $100$ 以下の整数値を取る関数 $f$ であり,任意の正の整数 $x,y$ について
$$f(x)+f(y)=f(x^2y)+f(4x)$$
を満たすものすべてについて,$(f(1), f(2),…, f(100))$ としてありうる組が $N$ 個存在するとき,$N$ が $2$ で割り切れる回数を求めよ.

G

poino 自動ジャッジ 難易度:
10月前

40

問題文

円に内接する四角形 $ABCD$ の対角線の交点を $P$ としたとき,
$$AB=14\, , AP=13\, ,AD=16\, ,BP=PD$$
が成り立ちました.このとき $AC$ の長さを求めてください.ただし求める答えは互いに素な正整数 $p,q$ を用いて $\dfrac{p}{q}$ と表せるので,$p+q$ を解答してください.

解答形式

半角数字で解答してください.

My_Problem

Lim_Rim_ 自動ジャッジ 難易度:
3月前

39

問題文

$8$ つのアルファベット $\mathrm{I, M, L, I, M, R, I, M}$ を並べて得られる文字列であって,$\mathrm{L}$ が $\mathrm{R}$ より左にあるでかつ,$\mathrm{I}$ の右隣に $\mathrm{M}$ が来るものはいくつありますか.


【補助線主体の図形問題 #048】
 先週は傍心がらみの求長問題をお送りしましたが、今週は内心と外心の両方が登場する求角問題にしてみました。暗算でも十分処理可能な解法も存在しています。五心の織り成す関係をお楽しみください。

解答形式

${\renewcommand\deg{{}^{\circ}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

A

nmoon 自動ジャッジ 難易度:
8月前

39

問題文

2つの正整数 $a,b$ の組のうち,最小公倍数が最大公約数の $10$ 倍となり,$a+b=154$ を満たすもの全てについて,$ab$ の総和を求めてください.

解答形式

非負整数で解答してください.

KOTAKE杯003(D)

MrKOTAKE 自動ジャッジ 難易度:
6月前

39

問題文

三角形$ABC$の内心を$I$とすると$AB=65,AC=78,AI=39$であったので
$BC$の長さを解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.


【補助線主体の図形問題 #028】
 今回は素朴な面積関係の問題を用意しました。素朴なだけに多様な手法が通用します。力技解法もあれば、補助線による暗算解法も仕込んであります。思い思いの手法で挑戦してみてください!

※2021年9月11日より難易度評価を見直して、総じて★+1しました。この問題の現難易度評価★2.5は、旧評価の★1.5にあたります。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

Go to Heaven

simasima 自動ジャッジ 難易度:
3月前

39

問題文

$$\sum^{100}_{k=1}\left\lfloor \sqrt[3]{1001001-k^3}\right \rfloor$$
を $2$ で割った余りはいくつですか?

解答形式

非負整数で解答してください。

提出制限

この問題の提出制限は $1$ 回です。

KOTAKE杯003(E)

MrKOTAKE 自動ジャッジ 難易度:
6月前

39

問題文

鋭角三角形$ABC$があり垂心を$H$とすると$AH=7,BH=CH=2$であったので
$AB$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

D

kusu394 自動ジャッジ 難易度:
7月前

38

問題文

実数 $x$ に対し
$$f(x)=4x^2+4x+5$$
と定めるとき,$f(f(x))$ の最小値を解答してください.

解答形式

半角整数で入力してください.