数学の問題一覧

カテゴリ
以上
以下

tb_lb

公開日時: 2023年1月7日22:18 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

整数問題 西暦問題 2023年問題

${}$ 西暦2023年問題第7弾、今年最後の西暦問題です。ラストを飾るのは循環小数です。循環小数というテーマ自体が奥深いわけですが、その一端を味わえるようにしました。どうぞ最後までお付き合いください。

お知らせ

${}$ いつもの図形問題ですが、明日1月8日(日)は出題をお休みして、翌週1月15日(日)から再開する予定です。お待たせしていますが、またどうぞよろしくお願いします。

解答形式

${}$ 解答は、$N$の値をそのまま入力してください。「$N=$」の記載は不要です。
(例) $N=107$ → $\color{blue}{107}$

halphy

公開日時: 2020年11月6日18:00 / ジャンル: 数学 / カテゴリ: 大学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$n$ を自然数とする。置換 $\sigma\in \mathfrak{S}_n$ に対して,$\sigma$ の近道度 $m(\sigma)$ を次のように定義する。

  • $\sigma$ を 互いに素な(共通元をもたない) 巡回置換の積に表したとき,各巡回置換の長さの積の逆数を $m(\sigma)$ とする。(太字部分は19:42追記)

例えば $\sigma=(1 4 2)(5 6 7)(3)\in \mathfrak{S}_7$ なら,$\sigma$ は長さ $3, 3, 1$ の巡回置換からなるから,$\sigma$ の近道度 $m(\sigma)$ は

$$
m(\sigma)=\frac{1}{3\cdot 3\cdot 1}=\frac{1}{9}
$$

である。自然数 $n$ に対して,${1,\cdots, n}$ の置換(これは $n!$ 通りある)の近道度の平均を

$$
f_n=\frac{1}{n!}\sum_{\sigma\in \mathfrak{S}_n} m(\sigma)
$$

とおく。

$$
f_1=1, \; f_2=\frac{\fbox{ア}}{\fbox{イ}}, \; f_4=\frac{\fbox{ウエオ}}{\fbox{カキク}}
$$

であり,

$$
\sum_{n=0}^{\infty} f_n=\fbox{X}
$$

である(級数が収束することは証明なしに認めてよい)。ただし $f_0=1$ と約束する。

※ $\mathfrak{S}_n$ は $n$ 次対称群を表す(19:03追記)。

解答形式

$\fbox{ア}$ 〜 $\fbox{ク}$ には 0 - 9 の数字が当てはまります。$\fbox{ X }$にはある実数が当てはまります。空欄のある分数はすべて既約です。

  • 1行目 には $\fbox{ア}$ に当てはまる数を半角で入力してください。
  • 2行目 には $\fbox{イ}$ に当てはまる数を半角で入力してください。
  • 3行目 には $\fbox{ウエオ}$ に当てはまる数を半角で入力してください。
  • 4行目 には $\fbox{カキク}$ に当てはまる数を半角で入力してください。
  • 5行目 には $\fbox{ X }$ に当てはまる数を入力します。答えを $10$ 進小数で表し,小数第2位を四捨五入して小数第1位まで求めてください。例えば,$9.876\cdots $ が答えになる場合は 9.9 と解答してください。

ヒント

  • $f_0,\cdots, f_{n-1}$ を使って $f_n$ を表すことができます。
  • $f_n$ の母関数を $f(t)=\displaystyle{\sum_{n=0}^{\infty}} f_nt^n$ とおくと,$f(t)$ はとある微分方程式を満たします。

ofukufukufuku

公開日時: 2020年11月6日18:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

数列$~\{a_n\},~\{b_n\}$を相異なる2つの実数$~\alpha,\beta~$を用いて以下のように定義する。
$$
a_n = \cfrac{1}{\displaystyle{\sum_{k=0}^n}\alpha^{n-k}\beta^{k}}~~~,~~~b_n = \sum_{m=0}^\infty\frac{1}{a_mn^{m+2}}
$$ただし、$\{b_n\}~$は$n\geq 2$で定義されるものとする。$\alpha,\beta~$が
$$
\begin{cases}
\alpha + \beta = 1\\
|\alpha||\beta| = 1
\end{cases}
$$を満たすとき、
$$
a_k = b_k
$$となる最小の自然数$~k~$は$~k=\fbox{ア}\fbox{イ}$であり、このとき$~b_k = \cfrac{\fbox{ウ}}{\fbox{エ}\fbox{オ}}$である。

解答形式

ア〜オには0から9までの数字のいずれかが入る。
数字列「アイウエオ」をすべて半角で入力し解答せよ。
ただし、分数は既約分数の形にすること。

zyogamaya

公開日時: 2020年10月9日11:44 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$I=\displaystyle \int_{0}^{\pi}\frac{x\sin x}{\sin^{2\cdot2}x -2\sin^2x+2} dx$を求めよ。

解答形式

答えは、
$\displaystyle I=\frac{\pi}{a\sqrt{b}}(c\log(\sqrt{d}+e)+\pi)$の形になります。($a,b,c,d,e$は1桁の自然数)
「abcde」(5桁の自然数)を入力してください。なお、センター、共通テスト形式で数字を埋めてください。

zyogamaya

公開日時: 2020年10月9日10:34 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

関数$f(x)=(xe^{x-1}+x^2+2x+2)e^{-x}$の極大値を求めよ。

解答形式

半角数字またはTeXで入力してください。分数の場合は「a/b」などと入力可能です。
例:
答えが$\displaystyle\frac{e^2}{7}$の場合、「e^2/7」と入力する。

答えが$\displaystyle\frac{4e^3+26}{e^4}$の場合、「(4e^3+26)/e^4」と入力する。

miq

公開日時: 2023年9月18日7:26 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

最小問題 解法多数 図形

問題文


$AB=AC$,$\angle BAC=120^{\circ}$ である二等辺三角形 $ABC$ があり,点 $D,E$ は線分 $AB,BC$ をそれぞれ $3:1$ に内分している.点 $P$ が辺 $AC$ 上を動くとき,線分の長さの和 $DP+PE$ が最小となるような線分の長さの比 $AP:PC$ を,最も簡単な整数の比で求めよ.

解答形式

解答は,互いに素な正整数 $a,b$ を用いて $a:b$ と表せます.1行目に $a$ の値を,2行目に $b$ の値を,それぞれ半角数字で解答してください.

Kinmokusei

公開日時: 2020年10月1日20:44 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

三角形の3つの内角の大きさを$A,B,C$とします。このとき、次の式の最小値を求めてください。
$$
\frac{1-\cos A}{\cos B+\cos C}+\frac{1-\cos B}{\cos C+\cos A}+\frac{1-\cos C}{\cos A+\cos B}
$$

解答形式

最小値は$\frac {[ア]}{[イ]}$となります。$[ア]+[イ]$を解答してください。
ただし、$[ア],[イ]$にはそれぞれ自然数が入り、その最大公約数は$1$とします。

tb_lb

公開日時: 2023年3月19日22:20 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 長さ

【補助線主体の図形問題 #091】
 図形の構造から面積比を求める問題を「面積関係」を称してしばしば出題してきました。今回はちょっと趣向を変えて、逆に面積比から辺比を求める問題です。式を立てるところまでは暗算で行けます。補助線と存分に戯れてください!

《参考》過去出題分から面積関係を問うている問題を一部抜粋

${}$ 他にもこのような問題にあたりたい場合には
https://pororocca.com/problem/?category=5&name=&dif_min=&dif_max=&tag=%E9%9D%A2%E7%A9%8D&sort_by=oldest
にアクセスすると一望できます。ただし、いわゆる普通の求積問題も交じっていることをご了解願います。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

1024

公開日時: 2023年3月19日9:01 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$nを2以上の整数とする。n!を,n^3-nで割った余りと,n^nで割った余りが等しくなるnを全て求めよ。$

解答形式

$半角数字でnの値が小さい順に一行ずつ解答してください。$
$(例)n=2,3,4となったとき$
2
3
4

tb_lb

公開日時: 2023年8月20日21:28 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 長さ

【補助線主体の図形問題 #112】
 今週の図形問題です。今回は正方形をたっぷり用意してみました。うまいこと補助線を引いて、僕の意図を浮かび上がらせてみてください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

masorata

公開日時: 2020年12月5日18:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

数列 まそらた杯

問題文

しずかちゃんがシャワーを浴びようとしてお湯を出し始めた。はじめのお湯の温度は $35$℃で、お湯を出し始めてから $n$ 秒後のお湯の温度は $T_n$℃であるとする。

しずかちゃんは非常に温度に敏感で、シャワーの温度をちょうど $40$℃に設定しないと落ち着かない。そこで、しずかちゃんはお湯を出し始めてから $n=1,2,3...$ 秒後に、シャワーの温度がちょうど $a(40-T_n)$℃だけ上がるように温度調節レバーを操作する。ここで、$a$ は正の定数である。なお、$T_n>40$ のときは $a(T_n-40)$℃だけ温度が「下がる」ように操作するものとする。

$N$ を自然数の定数として、温度調節レバーの操作がお湯の温度に反映されるまでちょうど $N$ 秒かかる。すなわち、しずかちゃんがお湯を出し始めてから $n$ 秒後に温度調節レバーを操作したとき、 はじめから $n+N$ 秒後と $n+N+1$ 秒後の間にシャワーの温度が $a(40-T_n)$℃だけ上昇する。

さて、$\displaystyle \lim_{n \to \infty} T_n=40$ であれば、しずかちゃんは十分な時間が経つと快適にシャワーを浴びることができる。$a$ が十分小さければ、すなわち温度をできるだけ少しづつ上げていけば、直感的にはこのことは可能である。では、具体的には $a$ はどれほど小さい必要があるのだろうか。そこで、$\displaystyle \lim_{n \to \infty} T_n=40$ が成り立たないような $a$ の最小値を $a_c$ とおく。以下の空欄を埋めよ。

(1) $N=1$ のとき、$a_c=\fbox{ア}$ である。

(2) $N=2$ のとき、$\displaystyle a_c=\frac{\fbox{イウ}+\sqrt{\fbox{エ}}}{\fbox{オ}}$ である。

解答形式

ア〜オには、0から9までの数字または「-」(マイナス)が入る。
(1)の答えとして「ア」にあてはまる数を半角で1行目に入力せよ。
(2)の答えとして、文字列「イウエオ」を半角で2行目に入力せよ。

Kinmokusei

公開日時: 2020年9月13日19:56 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文


$参考図(長さ等は正確でない)$

解答形式

半角数字で解答してください。