natsuneko

natsuneko

統計情報

フォロー数0
フォロワー数21
投稿した問題数16
コンテスト開催数1
コンテスト参加数4
解答された数206
いいねされた数14
解答した問題数604
正解した問題数545
正解率90.2%

人気問題

B

natsuneko 自動ジャッジ 難易度:
9月前

30

問題文

鋭角三角形 $ABC$ について, 線分 $BC$ 上に点 $D$ を取り, 三角形 $ABD$ の垂心を $H_1$, 三角形 $ADC$ の垂心を $H_2$ とします. すると, $BD = DC = H_1 H_2 = 10$, $H_1 D : H_2 D = 2 : \sqrt{10}$ が成立しました. このとき, 三角形 $ABC$ の面積としてあり得る値の総積を解答してください.

解答形式

答えは正整数になるため, その値を半角数字で解答してください.

整数問題1

natsuneko 自動ジャッジ 難易度:
12月前

30

問題文

正整数 $N$ に対し, $f(N)$ を以下のように定めます.
・ $N$ の正の約数全てに対し, それが $2$ で割り切れる最大の回数の総和

例えば, $f(6) = 2, f(4) = 3$ となります. このとき, $f(M) = 40$ となる最小の正整数 $M$ を解答して下さい.

解答形式

正整数を解答して下さい.

OMC没問4

natsuneko 自動ジャッジ 難易度:
11月前

24

問題文

下図のようにブロックがピラミッド状に積んであり,各ブロックに $1$ つずつ整数を割り当てていきます.このとき,最下段に並ぶブロックが $N$ 個であるとき,以下の条件を満たすように整数を割り当てることとします.
・ 最下段の左端のブロックには $1$ を,右端のブロックには $N−2$ を,また左から $i$ 番目のブロック $(2 \leq i \leq N−1)$ には $i−1$ をそれぞれ割り当てる.
・最下段以外のブロックには,そのすぐ下に位置する左右 $2$ つのブロックに割り当てられた数の積を割り当てる.

最も上にあるブロックに割り当てられた整数を $N−1$ で割った余りを $f(N)$ とします.このとき,$f(10^9 + 8) + f(10^9 + 404)$ の値を解答して下さい.ただし, $10^9 + 7, \ 5×10^8 + 3, \ 10^9 + 403, \ 5×10^8 + 201$ はいずれも素数であることは既知としてよいです.

解答形式

例)半角数字で解答して下さい.

A

natsuneko 自動ジャッジ 難易度:
9月前

20

問題文

三角形 $ABC$ の線分 $AB$ 上に点 $D$, 線分 $DC$ 上に点 $E$, 線分 $AC$ 上に点 $F$ を取ったところ, 以下が成立しました.
・ $\angle AED = \angle ABE = \angle EFC = 60^\circ$
・ $\angle EAC = 19^\circ$
・$DF = CF$
このとき, $\angle EBC$ の大きさは, 度数法で $N^\circ$ と表されるため, $N$ を解答してください.

解答形式

答えは正整数になるため, その値を半角数字で解答してください.

代数問題1

natsuneko 自動ジャッジ 難易度:
10月前

16

問題文

関数 $f : \mathbb{Z} \rightarrow \mathbb{Z}$ が $f(f(x) + y) = x + f(y)$ を (任意の整数の組 $(x, y)$ に対して) 満たすとき, $f(2024)$ の取りうる値の総和を解答してください.

解答形式

半角数字で解答してください.

C

natsuneko 自動ジャッジ 難易度:
9月前

15

問題文

問題の数値設定に不備があったため、数値設定を変更します。申し訳ありません。(三角形 $DEH$ の面積を $9$ から $3$ に変更しました。)

鋭角三角形 $ABC$ の垂心を $H$, 外心を $O$ とします. また, 直線 $BH$ と線分 $AC$ の交点を $D$, 直線 $CH$ と線分 $AB$ の交点を $E$ とします. そして, 線分 $DE$ の中点を $N$, 直線 $HN$ と直線 $AO$ の交点を $X$ とします. このとき, $A, X, O$ はこの順に並び, $AX = 3, XO = 5$ が成立しました. また, 三角形 $DEH$ の面積が $3$ であったとき, 三角形 $ABC$ の面積を求めてください.

解答形式

答えは, 正整数 $a, b$ を用いて $\sqrt{a} + b$ と表されるので, $a+b$ の値を半角数字で解答してください.

新着問題

代数問題2

natsuneko 自動ジャッジ 難易度:
8月前

6

問題文

実数列 $\lbrace a_n \rbrace_{n = 1, 2, \cdots 2024}$ が以下を満たしています.
・ $a_0 = 0$
・ $0 \leq a_n \leq n+1$
・ $a_{2024} = 2025$

このとき,
$$\sum_{n = 1}^{2024} \sqrt{{a_{n-1}}^2 + {a_{n}}^2 - a_{n-1}a_n - 2na_{n-1} + na_n + n^2}$$
には最小値が存在するため, 最小値を取るときの $a_{1000}$ の値を求めて下さい. ($a_{1000}$ の値は一意に定まります.)

解答形式

答えは, 互いに素な正整数 $a, b$ によって $\cfrac{b}{a}$ と表されるため, $a+b$ の値を解答して下さい.

整数問題2

natsuneko 自動ジャッジ 難易度:
8月前

15

問題文

正整数 $N$ が $2$ で割り切れる最大の回数を $v_2 (N)$ で表すことにします.
(例 : $v_2(6) = 1, \ v_2(16) = 4$)
このとき,
$$\sum_{i = 1}^{1024} \sum_{j = 1}^{1024} \sum_{k = 1}^{1024} v_2 ( \textrm {gcd} (i, j, k))$$
の値を解答して下さい. ( $\textrm{gcd}(i,j,k)$ で $i,j,k$ の最大公約数を表しているとします.)

解答形式

半角数字で解答して下さい.

D

natsuneko 自動ジャッジ 難易度:
9月前

10

問題文

こちらも問題に不備があったため、数値設定を変更いたしました。不備が重なってしまいたいへん申し訳ありません。

正六角形 $ABCDEF$ の線分 $AC, BC, DE$ 上にそれぞれ点 $P, Q, R$ を取ったところ, $PQ \perp BC, PR \perp DE, \angle QAR=60^\circ$ が成立しました. また, 三角形 $APQ$ の外心を $O$, 三角形 $APR$ の外心を $O^\prime$ とし, 三角形 $AOO^\prime$ の外接円と三角形 $APQ$ の外接円の交点を $X( \neq A)$, 三角形$AOO^\prime$ の外接円 と三角形 $APR$ の外接円の交点を $Y( \neq A)$ とすると, $BY=7$ が成立しました. このとき, 線分 $DX$ の長さを求めて下さい.

解答形式

答えは最大公約数が $1$ である正整数 $a,b, c$ によって $\cfrac{\sqrt{b}-c}{a}$ と表されるため, $a+b+c$ の値を半角数字で解答してください.

C

natsuneko 自動ジャッジ 難易度:
9月前

15

問題文

問題の数値設定に不備があったため、数値設定を変更します。申し訳ありません。(三角形 $DEH$ の面積を $9$ から $3$ に変更しました。)

鋭角三角形 $ABC$ の垂心を $H$, 外心を $O$ とします. また, 直線 $BH$ と線分 $AC$ の交点を $D$, 直線 $CH$ と線分 $AB$ の交点を $E$ とします. そして, 線分 $DE$ の中点を $N$, 直線 $HN$ と直線 $AO$ の交点を $X$ とします. このとき, $A, X, O$ はこの順に並び, $AX = 3, XO = 5$ が成立しました. また, 三角形 $DEH$ の面積が $3$ であったとき, 三角形 $ABC$ の面積を求めてください.

解答形式

答えは, 正整数 $a, b$ を用いて $\sqrt{a} + b$ と表されるので, $a+b$ の値を半角数字で解答してください.

A

natsuneko 自動ジャッジ 難易度:
9月前

20

問題文

三角形 $ABC$ の線分 $AB$ 上に点 $D$, 線分 $DC$ 上に点 $E$, 線分 $AC$ 上に点 $F$ を取ったところ, 以下が成立しました.
・ $\angle AED = \angle ABE = \angle EFC = 60^\circ$
・ $\angle EAC = 19^\circ$
・$DF = CF$
このとき, $\angle EBC$ の大きさは, 度数法で $N^\circ$ と表されるため, $N$ を解答してください.

解答形式

答えは正整数になるため, その値を半角数字で解答してください.

B

natsuneko 自動ジャッジ 難易度:
9月前

30

問題文

鋭角三角形 $ABC$ について, 線分 $BC$ 上に点 $D$ を取り, 三角形 $ABD$ の垂心を $H_1$, 三角形 $ADC$ の垂心を $H_2$ とします. すると, $BD = DC = H_1 H_2 = 10$, $H_1 D : H_2 D = 2 : \sqrt{10}$ が成立しました. このとき, 三角形 $ABC$ の面積としてあり得る値の総積を解答してください.

解答形式

答えは正整数になるため, その値を半角数字で解答してください.

開催したコンテスト

コンテスト名 日程 作成者
NGC 2024-02-21 21:00
〜 2024-02-23 21:00
natsuneko natsuneko

参加したコンテスト

順位 コンテスト名 得点 終了日時 作成者
1 TMCMC001 1400 2024年6月22日22:00 Tiri7_Ma13a_ Tiri7_Ma13a_ pomodor_ap pomodor_ap anotoko anotoko HighSpeed HighSpeed
2 N村杯Shortlist 001 1500 2024年6月9日22:40 Furina Furina pomodor_ap pomodor_ap
6 Nyannyan math contest 001 (NMC001) 600 2023年11月2日22:00 nmoon nmoon hiro1729 hiro1729 MARTH MARTH
1 ΠMC002 1350 2023年10月27日23:20 Furina Furina pomodor_ap pomodor_ap JoeFight JoeFight conan_kun conan_kun