単位立方体の内部からランダムに点を $2$ つ選んだときの平均距離を答えてください.
答えは最大公約数が $1$ である正の整数 $a,b,c,d,e$ と互いに素な正の整数 $f,g$ と平方因子を持たない正の整数 $h,i,j,k$ と正の整数 $l,m,n$ を用いて
$$\frac{a+b\sqrt{h}-c\sqrt{i}-d\pi}{e}+\frac{\ln(l+\sqrt j)}{m}+\frac{f\ln(n+\sqrt k)}{g}$$
と表されるので, $a+b+c+d+e+f+g+h+i+j+k+l+m+n$ を解答してください.
ただし, $\ln x$ は $x$ の自然対数を表します.
解説は用意していません
$AB \lt AC$ なる三角形 $ABC$ について,その外心を $O$ とし,線分 $BC$ 上に点 $D$ を $BD \gt CD$ となるように取ります. $B,C$ から直線 $AD$ に下ろした垂線の足をそれぞれ $X,Y$ とし, $X$ を通り直線 $AB$ に平行な直線と $Y$ を通り直線 $AC$ に平行な直線の交点を $Z$ とすると,三角形 $XYZ$ の外接円と三角形 $ABC$ の外接円は点 $T$ で接しました.また,直線 $BC$ について $O$ と対称な点を $S$ とすると,以下が成り立ちました.
$$ AS:AO:OD = 7:5:2$$このとき, $\dfrac{AT}{AO}$ の値は互いに素な正の整数 $a,b$ を用いて $\sqrt{\dfrac{a}{b}}$ と表せるので, $a+b$ の値を解答してください.
正の整数を半角で解答.
$$x^4-xy^3+y^2=11, x^3y-y^4+x^2=13$$ を満たす複素数の組 $(x,y)$ について,$\dfrac{y}{x}$ としてありうる値の総和は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.
$14\times 14$ のマス目に以下のように整数を書き込む.ただし,左から $m$, 上から $n$ 番目のマスを $(m,n)$ で表すものとする.
いま,PDC 君は $(m,n)$ にいるとき $(m+1,n), (m,n+1)$ に瞬間移動することができ,またそれ以外の移動をすることができない.あるマスからあるマスへの経路について,全ての訪問したマス(出発地点と到着地点を含む)に書き込まれた数字の総和をスコアとする.
$(1,1)$ から $(14,14)$ まで移動するとき,スコアが最小となるような移動方法はいくつあるか?
$p^2q+16r=2s^2$ を満たす素数の組 $(p,q,r,s)$ すべてについて,$pqrs$ の総和を解答せよ.
三角形 $ABC$ について,線分 $BC,CA$ の中点を $M,N$ とし,三角形 $AMN$ の外接円と三角形 $ABC$ の外接円,半直線 $AB$ がそれぞれ $A$ でない点で交わったのでそれぞれを $D, E$ とする.$MD=5, AB=34, BE=7$ が成り立つとき,線分 $BC$ の長さの二乗を解答せよ.
一辺の長さが $68$ の正三角形 $ABC$ について,線分 $BC$ 上に点 $D$ をとり,$D$ から $AB,AC$ に降ろした垂線の足をそれぞれ $E,F$ とする.$BE=14$ が成り立つとき,線分 $CF$ の長さを求めよ.
正の整数 $n$ について,$f(n)$ で $n$ の正の約数であり,$n$ の最小の素因数を素因数に持たないようなもののうち最大のものを表す.例えば,$f(2\times 3^2)=3^2, f(2\times 3\times 5)=3\times 5$ である.ただし,$f(1)=1$ と扱う.
また,$g(n)$ で $n$ の正の約数 $d$ すべてについて $f(d)$ の総和を表す.
このとき,
$$g(2\times 3\times 7\times 11\times 13\times 17)-g(5\times 7\times 11\times 13\times 17)$$ を求めよ.