アクセスがしづらい状況について (2025年1月23日14:22)
現在、ポロロッカにアクセスがしづらい状況が発生しております。 サーバー強化など応急処置は完了しておりますが、本格的な調査は2月ごろとなる見込みです。 ご迷惑をおかけし、大変申し訳ございません。

全問題一覧

カテゴリ
以上
以下

問題文

nを一桁の自然数とする。xについての多項式、

∫(0→x) (t^3 + {1/√(n-2)(n-3)(n-4)} t^-2 +1)^n dt

について、x^6の係数を自然数にするようなnを求めなさい。

解答形式

半角で一桁の数字を入力してください。

連続する整数の積

noname 自動ジャッジ 難易度:
4日前

6

$n$を正の整数とします。連続する$10$個の整数の積$n(n+1)(n+2)(n+3)…(n+9)$が$2025^3$で割り切れるような$n$としてあり得る最小のものを求めてください。

解答形式

$n$の値を半角で入力してください。

社会 歴史➀

s16-1159@ed.city.minoh.lg.jp 自動ジャッジ 難易度:
6日前

3

江戸幕府を開いた人物は?

フルネームで答えること。

工夫すると簡単になる問題

ac 自動ジャッジ 難易度:
7日前

4

問題

式1の時、式2の解を求めよ。
ただし、数の小さい順に答え、
答えが2つ以上ある場合、「,」を用いること。
例 2分の1と1の時は、1/2,1

式1

$$
4a^{2}-4a=-1
$$

式2

$$
(2a-2)^{10000}
$$

工夫すると簡単になる問題

ac 自動ジャッジ 難易度:
7日前

2

問題

式1の時、式2の解を求めよ。
ただし、数の小さい順に答え、
答えが2つ以上ある場合、「,」を用いること。
例 2分の1と1の時は、1/2,1

式1

$$
12a^{2}-a=1
$$

式2

$$
16a^{2}-8a-9a^{2}-6a
$$

第1回琥珀杯 大問1

kohaku 自動ジャッジ 難易度:
8日前

8

問題文

正整数$n$の値を無作為に定めるとき、$\sqrt{n}^\sqrt{n}$が有理数となる確率を求めよ。

解答形式

0または1の場合はそのまま答え、互いに素な正整数$a,b$を用いて$\frac{b}{a}$と表せる場合は$ab$を解答してください。

第1回琥珀杯 大問3

kohaku 自動ジャッジ 難易度:
8日前

16

問題文

$AB=DC=2,AD=3,AC=\sqrt{17}$を満たす等脚台形$ABCD$の面積を求めよ。

解答形式

互いに素な正整数$a,b$と平方因子を持たない正整数$c$を用いて$\frac{b\sqrt{c}}{a}$と表せるので、$abc$を解答してください。

第1回琥珀杯 大問5

kohaku 自動ジャッジ 難易度:
8日前

10

問題文

円$O_1,O_2,O_3$は点$O$を中心とする同心円で、この順に半径が小さい。円$O_1,O_2,O_3$の周上に、それぞれ点$A,B,C$をとるとき、$△ABC$の内部または周上に点$O$が含まれる確率を求めよ。

解答形式

0または1の場合はそのまま答え、互いに素な正整数$a,b$を用いて$\frac{b}{a}$と表せる場合は$ab$を解答してください。

第1回琥珀杯 大問2

kohaku 自動ジャッジ 難易度:
8日前

9

問題文

正三角形$ABC$の内部の1点$P$は、$AP=5,BP=4,CP=3$を満たす。この正三角形の面積を求めよ。

解答形式

互いに素な正整数$a,b$と平方因子をもたない正整数$c$、及び正整数$d$を用いて$\frac{b\sqrt{c}}{a}+d$と表せるので、$a+b+c+d$を解答してください。

第1回琥珀杯 大問4

kohaku 採点者ジャッジ 難易度:
8日前

5

$a^2+b^2+c^2+d^2+e^2=13053769$を満たす自然数$(a,b,c,d,e)$の組を1つ求めよ。ただし、$a<b<c<d<e$とする。

解答形式

a,b,c,d,e,fの順で、間を半角スペースで区切り解答してください。
(例)$(a,b,c,d,e)=(1,2,3,4,5)$だった場合
→1 2 3 4 5

実数の存在性

daikokuda_harumichi 採点者ジャッジ 難易度:
8日前

0

問題文

x, y は x^2 + y^2 = 1 を満たす実数である。このとき、、等式 x^2 + y^2 + (y/x)^2 - xy - (y^2)/x - y = 0を満たすx, yは存在するか。 存在する場合はx, yを求め、存在しない場合はそれを示せ。

解答形式

日本語で論述してください。

不動点と放物線

sha256 自動ジャッジ 難易度:
9日前

0

問1.(この問題の解答は不要。)

$f(x)$を$2$次の多項式とする。
$4$次方程式$f(f(x))=x$が$4$つの実数解$x=x_i(i=1,2,3,4)$を持つとき、
座標平面上の$4$点$P_i(x_i,f(x_i))$が同一円周上にあることを示せ。

問2.(この問題の答えを半角英数字で入力せよ。)

問1において、$f(x)=3x^2-11x-15$の場合について、
実際に$4$点$P_i$が共有する円の半径$r$と中心の座標(p,q)を求め、
$pqr^2$の値を解答せよ。