全問題一覧

カテゴリ
以上
以下

3直線に接する放物線の決定

AS 自動ジャッジ 難易度:
1日前

1

$a,b,c\ (a\neq0)$ を実数とする.放物線 $y=ax^2+bx+c$ が,$3$ 直線
$\ y=x-2,\ y=-3x+2,\ y=7x-3$
の全てと接するとき,$a,b,c$ の値を求めよ.

答えは,$a,b,c$ の値をそれぞれ $1,2,3$ 行目に記入せよ.ただし,整数でない有理数は既約分数(分母は自然数,分子は整数で,互いに素)で表し,$\displaystyle\frac{-5}{13}$ なら
-5/13
のように記入して答えよ.

【解答例】
1
-2
-1/3

5次方程式

Hensachi50 自動ジャッジ 難易度:
2日前

1

問題文

次の方程式を解いて、$x$の値をすべて求めてください。
$$x^5+2x^4+3x^3+3x^2+2x+1=0$$

解答形式

$a,b,c,d,e$のように解答してください。($π$はpiで$i$(虚数単位)はiで分数は$\frac{1}{2}$の場合は1/2のように解答してください。)

変換の順序

AS 自動ジャッジ 難易度:
4日前

1

方程式 $x^2+xy+y^3=7$ の表す図形を $y$ 方向に $\fbox{ (1) }$ 平行移動してから $\fbox{ (2) }$ に関して対称移動し,$x$ 方向に $\fbox{ (3) }$ 平行移動し,$\fbox{ (4) }$ に関して対称移動すると,方程式 $x^3-3x^2+xy-y^2+5y=0$ の表す図形となる.

以上の空欄 $(1)\sim(4)$ を適切に補充せよ.ただし,$(1),(3)$ には数値を答え,$(2),(4)$ には以下の語群から言葉を選び答えよ.

【語群】
$\mathrm A.\,x$ 軸
$\mathrm B.\,y$ 軸
$\mathrm C.$ 直線 $y=x$

答えは,空欄 $(1),(2),(3),(4)$ に当てはまる数または記号をそれぞれ $1,2,3,4$ 行目に記して答えよ.
ここで,整数でない有理数は既約分数(分母は自然数,分子は整数で,互いに素)で表し,$\displaystyle\frac{-5}{13}$ なら
-5/13
と記すこと.

【解答例】
3
A
-5/13
B

三角比の変形

itami 自動ジャッジ 難易度:
6日前

1

(tan80°-2sin80°)/(1+2cos80°)=tanA°
A=?°

近似値を用いずに求めてください

数値のみ

8角形の面積

AS 自動ジャッジ 難易度:
6日前

7

面積 $1$ の平行四辺形 $\mathrm{ABCD}$ に対し,辺 $\mathrm{AB},\mathrm{BC},\mathrm{CD},\mathrm{DA}$ の中点をそれぞれ $\mathrm K,\mathrm L,\mathrm M,\mathrm N$ とする.$8$ 直線 $\mathrm{AL},\mathrm{AM},\mathrm{BM},\mathrm{BN},\mathrm{CN},\mathrm{CK},\mathrm{DK},\mathrm{DL}$ によって囲まれてできる $8$ 角形の面積を求めよ.

ただし,整数でない有理数は既約分数(分母は自然数,分子は整数で,互いに素)で表し,$\displaystyle\frac{5}{13}$ なら
5/13
のように記入して答えよ.

正三角形ができない方法

AS 自動ジャッジ 難易度:
7日前

0

正 $6$ 角形 $\mathrm{ABCDEF}$ の中心を $\mathrm O$ とし,正 $6$ 角形の $6$ 個の辺と,$\mathrm O$ と各頂点を結ぶ $6$ 個の線分の,計 $12$ 個の線分を考える.このとき,これらの線分を辺とする正三角形が $6$ 個できている.これらの線分のうちの幾つかを取り除いて,正三角形が $1$ つもできない状態を作りたい.そのような取り除き方は何通りか求めよ.

総当たり戦の確率

AS 自動ジャッジ 難易度:
7日前

0

$6$ 個のチームが総当たり戦をおこなう.つまり,各チームは他のチームとそれぞれ $1$ 回ずつ試合をおこない勝敗を決める.ただし,各試合において引き分けはなく,いずれが勝つかは等確率であるとする.
このとき,$3$ 勝 $2$ 敗のチームがちょうど $3$ チームできる確率を求めよ.

答えは互いに素な自然数 $\eta,\zeta$ を用いて $\displaystyle\frac \eta\zeta$ と表されるので,$1$ 行目に $\eta$ を,$2$ 行目に $\zeta$ を記して答えよ.

クラスの人数

AS 自動ジャッジ 難易度:
8日前

5

AクラスとBクラスの生徒の合計は24人である.鉛筆とボールペンについて在庫が何本かあり,それらを生徒に配りたい.Aクラスの生徒に鉛筆を7本ずつ配ろうとすると最後の1人で足りなくなり,Bクラスの生徒にボールペンを6本ずつ配ろうとすると最後の1人で足りなくなる.そこで,逆にAクラスの生徒にボールペンを,Bクラスの生徒に鉛筆を配ると,クラス毎に同じ本数だけ,在庫をちょうど配りきることができた.(1人あたりに配った本数は,AクラスとBクラスでは同じとは限らない.)
Aクラスの生徒の人数としてありえる数を全て求めよ.

答えは,小さい順に空白を入れずカンマで区切って記入せよ.例えば,1と2と3があり得るなら
1,2,3
と答えよ.

指数型曲線の長さ2

AS 自動ジャッジ 難易度:
10日前

0

$e$ は自然対数の底とする.座標平面上において
$\ x=t-e^{2t},\ y=2e^t+e^{-t}$
によってパラメータ表示される曲線について,$0\leqq t\leqq \log 2\sqrt2$ 部分の長さを求めよ.

答えは $\displaystyle\frac{\fbox{ (1) }\sqrt{\fbox{ (2) }}}{\fbox{ (3) }}$ の形で表されるので,空欄 $ (1),(2),(3)$ に当てはまる自然数をそれぞれ $1, 2, 3$ 行目に記して答えよ.ただし,最も簡単な形に直して答えること.

指数型曲線の長さ

AS 自動ジャッジ 難易度:
10日前

0

$e$ は自然対数の底とする.
$\ x=(2t-1)e^t,\ y=2(t^2-t+1)e^t$
でパラメータ表示される曲線について,$0\leqq t\leqq 1$ 部分の長さを求めよ.

答えは有理数 $a,b$ を用いて $a+be$ の形で表されるので,$a,b$ の値をそれぞれ $1, 2$ 行目に記して答えよ.
ここで,整数でない有理数は既約分数(分母は自然数,分子は整数で,互いに素)で表し,$\displaystyle\frac{-5}{13}$ なら
-5/13
のように記入する.

10日前

2

問題文

$AB=7$を満たす$\triangle ABC$について、線分$AB$上に$AC=BD$となるように点$D$をとる。直線$BC$を対称の軸として点$D$を対称移動した点を点Eとし、線分$BE,DE$を結ぶ。ここで、線分$DE$と線分$BC$は交点を持った。この点を点$M$とする。さらに、$\angle BAC$の二等分線と線分$BC$の交点を点$F$としたとき、$\angle AFB=135°$であった。$CM+DM=3$のとき、凹五角形$ABEMC$の面積を求めよ。

解答形式

単位を付けずに半角数字で解答してください。

往来可能な路線図

AS 自動ジャッジ 難易度:
11日前

0

凸 $5$ 角形の頂点に町が $1$ つずつ,合計 $5$ つある.これらの町のうち $2$ つを結ぶような真っ直ぐな路線を何本か自由に引く方法を考える.なお路線は交差してもよい.
このとき,路線によって全ての町が往来可能となるような方法の総数を求めよ.