平行四辺形と半円(2)

tb_lb 自動ジャッジ 難易度: 数学 > 中学数学
2022年5月15日22:14 正解数: 5 / 解答数: 6 (正答率: 83.3%) ギブアップ不可
初等幾何 長さ

【補助線主体の図形問題 #057】
 今週の図形問題はいつもにも増して多くの解法がありそうな感じに仕上がりました。暗算解法が仕込んであるのはいつも通りですが、補助線をガリガリ引いてのゴリ押し解法でもおそらく押し切れます。補助線と共に試行錯誤をお楽しみください。

解答形式

${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}$ → $\color{blue}{12.00}$  $10\sqrt{2}\ \mathrm{cm}$ → $\color{blue}{14.14}$
 入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Sign in with Google Discordでログイン パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

30日前

5

【補助線主体の図形問題 #070】
 今週は、僕の出題では珍しく軌跡の問題です。初等幾何によらない解法も存在しますが、いつも通り補助線でも突破可能です。難易度評価は補助線による解法を想定しており、それ以外の解法が思いついた方にはぐっと簡単に見えるかもしれません。お好みの解法でお楽しみください!

解答形式

${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}$ → $\color{blue}{12.00}$  $10\sqrt{2}\ \mathrm{cm}$ → $\color{blue}{14.14}$
 入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。

6月前

3

【補助線主体の図形問題 #051】
 今週の図形問題です。今回は見た目はおとなしく、でも、一味異なる決まり方のする問題を用意してみました。補助線の過程も補助線後の処理も存分にお楽しみください。

解答形式

${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}$ → $\color{blue}{12.00}$  $10\sqrt{2}\ \mathrm{cm}$ → $\color{blue}{14.14}$
 入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。

7月前

3

【補助線主体の図形問題 #047】
 今週の図形問題は傍心を登場させてみました。傍心は性質の多さの割には出題の例が少ないもので、僕のような初等幾何の問題作成者にはありがたい存在です。当問も暗算解法を仕込んでいます。傍心と戯れる経験は少ないかもしれませんが、臆せず楽しんでもらえれば幸いです。

解答形式

${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}$ → $\color{blue}{12.00}$  $10\sqrt{2}\ \mathrm{cm}$ → $\color{blue}{14.14}$
 入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。


【補助線主体の図形問題 #055】
 直角三角形を舞台に、垂線&角の2等分線&平行線と直線図形の定番役者がそろいました。代数的にガリガリやりたくなりますが、いつも通り暗算解法も仕込んであります。選択肢の多さが生み出す発見をお楽しみください。

解答形式

${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}$ → $\color{blue}{12.00}$  $10\sqrt{2}\ \mathrm{cm}$ → $\color{blue}{14.14}$
 入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。

12月前

18

【補助線主体の図形問題 #028】
 今回は素朴な面積関係の問題を用意しました。素朴なだけに多様な手法が通用します。力技解法もあれば、補助線による暗算解法も仕込んであります。思い思いの手法で挑戦してみてください!

※2021年9月11日より難易度評価を見直して、総じて★+1しました。この問題の現難易度評価★2.5は、旧評価の★1.5にあたります。

解答形式

${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\ \mathrm{cm}^2$ → $\color{blue}{14.14}$
 入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。

三角形と4つの正方形

tb_lb 自動ジャッジ 難易度:
5月前

5

【補助線主体の図形問題 #053】
 先週は予告もなく出題をお休みして失礼しました。
 今週の図形問題は大した計算量ではないのですが、簡単なメモが取れるとぐっと解きやすくなるかと思います。補助線が活躍するのはいつも通りです。どうぞ存分にお楽しみください。

解答形式

${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}$ → $\color{blue}{12.00}$  $10\sqrt{2}\ \mathrm{cm}$ → $\color{blue}{14.14}$
 入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。

15月前

7

【補助線主体の図形問題 #018】
 今回は単純な設定なだけに様々な解法が潜んでいそうな問題を用意しました。あれこれ補助線を引いているうちに解けてしまうかもしれませんが、しっかり暗算解法も仕込んであります。いろいろな発想をお楽しみください。

解答形式

${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}$ → $\color{blue}{12.00}$  $10\sqrt{2}\ \mathrm{cm}$ → $\color{blue}{14.14}$
 入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。

7月前

5

問題文

半円と直角三角形を組み合わせた以下の図について、青で示した線分と赤で示した線分の長さの比を求めてください。

解答形式

$\left(\dfrac{x}{y}\right)^2$ の値を半角数字で解答してください。

円周上の5点

tb_lb 自動ジャッジ 難易度:
13月前

6

【補助線主体の図形問題 #027】
 今週もいつも通り補助線の威力が楽しめる図形問題を用意しました。暗算処理が十分可能なように調整してあります。とはいえ、言うまでもなく解法は自由です。お好きな解法でお好きなようにお楽しみください。

解答形式

${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}$ → $\color{blue}{12.00}$  $10\sqrt{2}\ \mathrm{cm}$ → $\color{blue}{14.14}$
 入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。

求長問題8

Kinmokusei 自動ジャッジ 難易度:
2年前

4

問題文

2つの直角二等辺三角形が、それらの斜辺が交点をもつように配置されています。青い線分の長さが10、Xで示した角が鈍角のとき、赤い線分の長さを求めてください。
ただし、同じ色で示した線分の長さはそれぞれ等しいです。

解答形式

(赤い線分の長さ)$=[ア]\sqrt{[イ]}$ となります。
ただし、$[ア],[イ]$にはそれぞれ自然数が入ります。$[ア]+[イ]$を解答してください。また、$[イ]$に入る自然数はできるだけ小さくしてください。
例: (赤い線分の長さ)$=3\sqrt5$ なら、$3+5\rightarrow8$と解答

正方形と2つの円

tb_lb 自動ジャッジ 難易度:
16月前

6

【補助線主体の図形問題 #015】
 今回は円がらみの求長問題にしてみました。地道なド根性解法もありますが、補助線次第では暗算も可能なように仕込んであります。お好みの解法・手法で挑戦してみてください。

解答形式

${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}$ → $\color{blue}{12.00}$  $10\sqrt{2}\ \mathrm{cm}$ → $\color{blue}{14.14}$
 入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。

求長問題12

Kinmokusei 自動ジャッジ 難易度:
20月前

4

問題文

長方形・正方形・円が図のように配置されています。赤で示した線分の長さが7、長方形の面積が12のとき、青い線分の長さとしてあり得るものを全て求めてください。

解答形式

解答は$\sqrt{\fbox {アイ}},\frac{\sqrt{\fbox{ウエオ}}}{\fbox カ}$となります。文字列「アイウエオカ」を解答してください。ただし、根号の中身が平方数の倍数とならないように解答してください。