2つの扇形

tb_lb 自動ジャッジ 難易度: 数学 > 中学数学
2022年9月27日0:05 正解数: 4 / 解答数: 6 (正答率: 66.7%) ギブアップ不可
初等幾何 長さ

全 6 件

回答日時 問題 解答者 結果
2023年5月30日14:28 2つの扇形 nakakun
正解
2023年5月30日14:25 2つの扇形 nakakun
不正解
2022年10月2日12:44 2つの扇形 hkd585
正解
2022年9月28日9:55 2つの扇形 tima_C
正解
2022年9月27日9:02 2つの扇形 nzm
不正解
2022年9月27日0:14 2つの扇形 naoperc
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

18月前

6

【補助線主体の図形問題 #051】
 今週の図形問題です。今回は見た目はおとなしく、でも、一味異なる決まり方のする問題を用意してみました。補助線の過程も補助線後の処理も存分にお楽しみください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。


【補助線主体の図形問題 #052】
 今週の図形問題もシンプルにしてみました。シンプルなだけに補助線の威力が存分に味わえるかと思います。頭の中で完全に処理し切れる解法を想定していますが、これだけ単純な構図だと解法も多様でしょう。自由な手法でお楽しみいただければ本望です。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

2年前

9

【補助線主体の図形問題 #009】
 今日の問題はとびっきりシンプルにしてみました。補助線でガリガリ計算することもできますが、ある発想があれば暗算一発で解くことも可能です。いろいろな可能性を探ってみてください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 全体の方針をぼんやりと
  2. この問題におけるキーワードをぼんやりと
  3. ヒント2の内容を具体的に
  4. 補助線と全体の方針をやや具体的に
12月前

8

【補助線主体の図形問題 #070】
 今週は、僕の出題では珍しく軌跡の問題です。初等幾何によらない解法も存在しますが、いつも通り補助線でも突破可能です。難易度評価は補助線による解法を想定しており、それ以外の解法が思いついた方にはぐっと簡単に見えるかもしれません。お好みの解法でお楽しみください!

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

二等辺三角形と求角

tb_lb 自動ジャッジ 難易度:
14月前

11

【補助線主体の図形問題 #063】
 今週はシンプルな難角問題を用意してみました。4頂点に対しすでに6線分が引かれていますから、補助点を打たなくてはなりません。要となる補助点を試行錯誤で探す楽しみを味わってもらえたら幸いです。

解答形式

${\renewcommand\deg{{}^{\circ}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。


【補助線主体の図形問題 #023】
 今回は久しぶりに求角問題を用意しました。うまい補助線が引けるとスパッと解けるようになっています。補助線と共に楽しいひと時をお過ごしください。

解答形式

${\renewcommand\deg{{}^{\circ}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

円と3本の弦

tb_lb 自動ジャッジ 難易度:
2年前

12

【補助線主体の図形問題 #019】
 1週空いての久しぶりの出題となりました。今回はガリガリ長さを求める解法から暗算解法まで解法の種類多めとなっています。腕に覚えのある方は暗算解法だけでなく、解法の数にも挑戦してもらえたら嬉しいです!

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\def\mytri#1{\triangle \mathrm{#1}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 注目点
  2. 全体方針
  3. ヒント2をやや具体的に

三角形と4つの正方形

tb_lb 自動ジャッジ 難易度:
17月前

7

【補助線主体の図形問題 #053】
 先週は予告もなく出題をお休みして失礼しました。
 今週の図形問題は大した計算量ではないのですが、簡単なメモが取れるとぐっと解きやすくなるかと思います。補助線が活躍するのはいつも通りです。どうぞ存分にお楽しみください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。


【補助線主体の図形問題 #055】
 直角三角形を舞台に、垂線&角の2等分線&平行線と直線図形の定番役者がそろいました。代数的にガリガリやりたくなりますが、いつも通り暗算解法も仕込んであります。選択肢の多さが生み出す発見をお楽しみください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

21月前

8

【補助線主体の図形問題 #039】
 今日は12月12日ということでそこかしこに12が現れる問題を用意してみました。補助線が活躍するのはいつも通りですし、暗算処理が可能な解法も仕込んであります。
 年末に向かう忙しい時期かもしれませんが、ひと時の図形タイムをお過ごしください!

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。


【補助線主体の図形問題 #048】
 先週は傍心がらみの求長問題をお送りしましたが、今週は内心と外心の両方が登場する求角問題にしてみました。暗算でも十分処理可能な解法も存在しています。五心の織り成す関係をお楽しみください。

解答形式

${\renewcommand\deg{{}^{\circ}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

2年前

9

【補助線主体の図形問題 #018】
 今回は単純な設定なだけに様々な解法が潜んでいそうな問題を用意しました。あれこれ補助線を引いているうちに解けてしまうかもしれませんが、しっかり暗算解法も仕込んであります。いろいろな発想をお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\def\mytri#1{\triangle \mathrm{#1}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 全体の方針をぼんやりと
  2. 注目点をぼんやりと
  3. ヒント2の続き
  4. ヒント3の続き