「おおきなかぶ」F問題

Furina 自動ジャッジ 難易度: 数学 > 高校数学
2023年11月2日22:40 正解数: 10 / 解答数: 17 (正答率: 58.8%) ギブアップ数: 5

問題文

数列 $a_n$ は,$a_1=\sqrt{2-2\cos{\left(\dfrac{882}{5}\right)^\circ}},a_2=1-2\cos{\left(\dfrac{882}{5}\right)^\circ}$ として,以下の漸化式を満たします.
$$a_{n+1}=\dfrac{(a_n)^2-1}{a_{n-1}}(n=2,3,4,\cdots)$$
 このとき,$\lfloor (a_{49})^2\rfloor$ の値を求めてください.ただし,$-0.998027<\cos{\left(\dfrac{882}{5}\right)^\circ}<-0.998026$を用いても構いません.

解答形式

$\lfloor (a_{49})^2\rfloor$ を解答してください.$\lfloor x\rfloor$ は$x$を超えない最大の整数です.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

数列の問題

matsukichi 自動ジャッジ 難易度:
12月前

4

問題文

$2000$ 以下の非負整数 $a$ に対し,数列 $c_{n}$ が以下をみたします.
$$c_{1}=a, c_{2}=2000-a, c_{n+2}=c_{n+1}+c_{n}$$
このとき,$c_{2^{4333}}$ が $47^2$ の倍数となるような $a$ としてありうる値の総和を解答してください.

解答形式

半角数字で解答してください.

自作問題A1

imabc 自動ジャッジ 難易度:
9月前

7

問題文

正の実数 $x,y,z$ が $xyz=x+y+z+2$ を満たしています.このとき, $x+4y+9z$ の最小値を求めてください.

解答形式

答えを入力してください.

求長問題25

Kinmokusei 自動ジャッジ 難易度:
3年前

7

問題文

半円が内接する長方形に、図のように線を引きました。赤と青で示した線分の長さがそれぞれ3,4で、ピンクで示した線分の長さが等しいとき、緑の線分の長さを求めてください。

解答形式

$x=\sqrt{\fbox{アイ}}$です。文字列 アイ を解答してください。

OMC没問2

natsuneko 自動ジャッジ 難易度:
14月前

8

問題文

正整数 $n$ に対して, $n^i \equiv 1 \ (\textrm{mod} \ 25 )$ を満たす最小の正整数 $i$ を $f(n)$ とします. (ただし, このような $i$ が存在しない場合は, $f(n) = 0$ とします.) このとき, $1 \leq n \leq 10000$ の範囲で $f(n)$ が最大値をとるような $n$ の総積を $1000$ で割った余りを解答して下さい.

解答形式

非負整数値を解答して下さい.

No.01 展開と因数分解

Prime-Quest 自動ジャッジ 難易度:
12月前

5

問題

$(1)$ $4$ つの実数 $(10\pm\sqrt 2\pm 4\sqrt 3)^3+1$ の和と等しい整数の最大素因数を求めよ.
$(2)$ 方程式 $(2x^2-x)(2x^2-7x+6)=7$ の実数解 $x$ に対する $x^5-\dfrac{1}{x^5}$ の値を求めよ.

解答形式

$(1),(2)$ の和を半角数字で入力してください.

12月前

3

問題文

三角形 $ABC$ において,$A,B,C$ から対辺に下ろした垂線の足を $D,E,F$ とし,三角形 $ABC$ の垂心を $H$ としたところ,$DE=9,DF=8,DH=7$ となりました.
このとき,$AH$ の長さは互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

求面積問題24

Kinmokusei 自動ジャッジ 難易度:
3年前

12

問題文

扇形内部に図のように線を引きました。青い三角形の面積が12のとき、緑の三角形の面積を求めてください。

解答形式

半角数字で解答してください。

幾何問題11/22

miq_39 自動ジャッジ 難易度:
14月前

6

問題文

円 $\omega$ 上に相異なる $2$ 点 $A,B$ がある.ただし,弦 $AB$ は $\omega$ の直径ではない.$A,B$ における $\omega$ の接線をそれぞれ $l,m$ とする.劣弧 $AB$ 上(端点を除く)に点 $P$ をとり,$P$ を通り $l$ に平行な直線と $\omega$ の交点であって,$P$ でないものを $C$ とし,$P$ を通り $m$ に平行な直線と $\omega$ の交点であって,$P$ でないものを $D$ とする.$l$ と直線 $BC$ の交点を $E$,$m$ と線分 $AD$ の交点を $F$ とする.また,線分 $AF$ と線分 $BE$ の交点を $X$,線分 $CF$ と線分 $DE$ の交点を $Y$ とする.$AB=\sqrt{69}$,$AC=3$,$BD=6$ がそれぞれ成り立っているとき,線分 $XY$ の長さは,互いに素な正整数 $a,c$ および平方因子を持たない $2$ 以上の整数 $b$ を用いて $\dfrac{a\sqrt{b}}{c}$ と表されるので,$a+b+c$ の値を求めよ.

解答形式

半角数字で解答してください.

最小値

matsukichi 自動ジャッジ 難易度:
12月前

4

問題文

$a\lt c$ なる実数 $a, b, c$ が
$$\sqrt{(1+a^2)(1+b^2)}=\dfrac{(b+c)(c-a)}{1+c^2}$$
をみたすとき,$(8a+13b+21c)^2$ の取りうる最小値を解答してください.

解答形式

半角数字で解答してください.

自作問題C1

imabc 自動ジャッジ 難易度:
9月前

6

問題文

以下の条件を全て満たす $20001$ 個の整数の組 $(a_0,a_1,…,a_{20000})$ を 階段状な組 と定義します.

  • $a_0=a_{20000}=0$ .
  • $k=0,1,…,19999$ について $|a_{k+1}-a_k|=1$ .

また,階段状な組 $A=(a_0,a_1,…,a_{20000})$ に対して スコア $S(A)$ を以下のように定めます.

  • 以下の条件を全て満たす $1001$ 個の整数の組 $(x_0,x_1,…,x_{1000})$ の個数.
    $\quad$ ・ $k=0,1,…1000$ について $x_k$ は $0$ 以上 $20000$ 以下の 偶数
    $\quad$ ・ $k=0,1,…999$ について $x_k\lt x_{k+1}$ .
    $\quad$ ・ $a_{x_{1000}}=0$ .

階段状な組全てに対してスコア $S(A)$ の総和を求め,その値が $2$ で割り切れる最大の回数を求めてください.

解答形式

答えを入力してください.

求長問題6

Kinmokusei 自動ジャッジ 難易度:
4年前

9

問題文

図のように配置された図形で、半円の半径が$5$、赤、青、緑の線分の長さがそれぞれ$3,X,Y$のとき、$X^2+Y^2$の値を求めてください。

解答形式

半角数字で解答してください。

求角問題8

Kinmokusei 自動ジャッジ 難易度:
3年前

9

問題文

2つの正方形が図のように配置されています。緑で示した角の大きさを求めてください。

解答形式

半角数字で解答してください。
ただし、解答は度数法で、「°」や「度」といった単位を付けずに0以上360未満の数を解答してください。