200N

MARTH 自動ジャッジ 難易度: 数学 > 高校数学
2023年12月28日7:41 正解数: 16 / 解答数: 42 (正答率: 38.1%) ギブアップ数: 5
整数

全 42 件

回答日時 問題 解答者 結果
2025年10月28日10:53 200N Weskdohn
正解
2025年7月7日16:31 200N puriapos
不正解
2025年6月15日23:13 200N ゲスト
正解
2025年6月15日23:12 200N ゲスト
不正解
2025年6月15日23:11 200N ゲスト
不正解
2025年6月6日20:25 200N kinonon
正解
2025年6月6日20:22 200N kinonon
不正解
2025年6月6日20:21 200N kinonon
不正解
2025年6月6日20:19 200N kinonon
不正解
2025年6月6日20:16 200N kinonon
不正解
2025年6月5日0:28 200N poinsettia
正解
2025年6月5日0:26 200N poinsettia
不正解
2025年6月5日0:25 200N poinsettia
不正解
2025年5月15日14:11 200N ZIRU
正解
2024年8月10日0:02 200N mogura
正解
2024年4月12日19:59 200N Tehom
正解
2024年4月12日18:44 200N Tehom
不正解
2024年4月12日18:38 200N Tehom
不正解
2024年3月26日21:20 200N 0__citrus
不正解
2024年3月26日21:17 200N 0__citrus
不正解
2024年3月26日21:16 200N 0__citrus
不正解
2024年3月23日11:55 200N noname
不正解
2024年3月15日0:17 200N ゲスト
正解
2024年3月15日0:11 200N ゲスト
不正解
2024年3月15日0:05 200N ゲスト
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

300A

MARTH 自動ジャッジ 難易度:
21月前

24

正の実数の組 $(x_1,x_2,x_3,x_4,x_5)$ に対し, $a_1=b_1=1
$ および $n=1,2,3,4,5$ について以下を満たす実数の組の列 $(a_1,b_1),(a_2,b_2),\dots,(a_6,b_6)$ を考えます.
$$a_{n+1}=x_n a_n-n b_n,\quad b_{n+1}=x_n b_n$$
$b_6=100$ となるとき, $a_6$ として取りうる値には最大値が存在し, それを $M$ とします. $M$ の最小多項式 $P$ が存在するので, $P(500)$ を求めてください. ただし, $P$ の最高次の係数は $1$ とします.

座王001(サドンデス5)

shoko_math 自動ジャッジ 難易度:
20月前

20

問題文

$1,2,3,4,5,6,7,8,9$ を並べ替えてできる $9$ 桁の正の整数のうち $99$ の倍数であるものの最大値を求めてください.$\

解答形式

半角数字で解答してください.

座王001(サドンデス6)

shoko_math 自動ジャッジ 難易度:
20月前

24

問題文

$S=\{1,2,3,4,5,6\}$ とします.$S$ の相異なる部分集合 $A,B,C$ の組であって,$A\subset B\subset C$ を満たすものの個数を求めてください.
(ただし,$A,B,C$ は空集合や $S$ に一致してもよいものとします.)

解答形式

半角数字で解答してください.

座王001(サドンデス3)

shoko_math 自動ジャッジ 難易度:
20月前

13

問題文

$101\times101$ のマス目の各マスには $0,1$ のいずれかが書かれており,どの $2\times2$ のマス目についても $0,1$ が少なくとも $1$ つずつは書き込まれているとき,マス目に書かれた数の和の最大値を求めてください.

解答形式

半角数字で解答してください.

座王001(G2)

shoko_math 自動ジャッジ 難易度:
20月前

14

問題文

$\triangle{ABC}$ の外接円を $O_1$ とし,辺 $CA$,辺 $CB$,円 $O_1$ に接する円を $O_2$ とします.また,円 $O_2$ と辺 $CA$ ,辺 $CB$,円 $O_1$ の接点をそれぞれ $P,Q,T$ とし,直線 $TP$ と円 $O_1$ の交点を ${R}(\ne{T})$ とし,直線 $TQ$ と円 $O_1$ の交点を $S(\ne{T})とします.$
$TA=23,TB=35,TC=57$ のとき,(四角形 $ARCS$ の面積):(四角形 $BSCR$ の面積)は互いに素な正の整数 $a,b$ を用いて $a:b$ と表されるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

OMC不採用問題改題

bzuL 自動ジャッジ 難易度:
23月前

30

問題文

$14^3$ の $16$ 個の正の約数を並び替えた数列を $a_1,\ldots,a_{16}$ とおき,$15^3$ の $16$ 個の正の約数を並び替えた数列を$b_1,\ldots,b_{16}$ とおきます.この二つの数列のスコア
$$
\sum_{k=1}^{16} \frac{a_k}{b_k}
$$
で定めます.数列 $a,b$ の組として考えられるものは $(16!)^2$ 通りありますが,これらの組におけるスコアの(相加)平均を求めてください.ただし,求める値は互いに素な正整数 $p,q$ を用いて,$\dfrac{p}{q}$ と表されるため,$p+q$ を解答してください.

解答形式

半角数字で解答してください.

座王001(A1)

shoko_math 自動ジャッジ 難易度:
20月前

17

問題文

$0$ でない相異なる実数 $a,b,c,d$ が以下の関係式を満たすとき,$a^2+b^2+c^2+d^2$ の値を求めてください.
$\begin{cases}
a^3-12a^2-34a+bcd=0\\
b^3-12b^2-34b+cda=0\\
c^3-12c^2-34c+dab=0\\
d^3-12d^2-34d+abc=0\\
\end{cases}$

解答形式

半角数字で解答してください.

座王001(A2)

shoko_math 自動ジャッジ 難易度:
20月前

13

問題文

実数 $x,y,z$ が
$\begin{cases}
x+y+z=\dfrac{7}{2}\\
x^2+y^2+z^2+3(xy+yz+zx)=14\\
x^2y+y^2z+z^2x+xy^2+yz^2+zx^2+2xyz=8
\end{cases}$
を満たすとき,$\dfrac{y^2}{x^2}+\dfrac{z^2}{y^2}+\dfrac{x^2}{z^2}$ の値として考えられるものの総和は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.


問題文

下図は、直角二等辺三角形と正三角形と頂角が150°の二等辺三角形を組み合わせた図形です。直角二等辺三角形の面積が24㎠のとき、図形全体の面積を求めなさい。

解答形式

単位は㎠(単位は書かなくてよい)、数字は半角で入力してください。
例)10

bMC_C

bzuL 自動ジャッジ 難易度:
16月前

31

問題文

凸五角形 $ABCDE$ は以下を満たします.
$$
\begin{cases}
AB=BC=CD=DE \\\\
2\angle{BAE} = \angle{CBA}\\\\
2\angle{ECA} = \angle{AEC} = \angle{BAE} + 30^{\circ}
\end{cases}
$$
このとき,互いに素な正整数 $a,b$ を用いて $\angle{EDB}=\bigg(\dfrac{a}{b}\bigg)^{\circ}$と表すことができるので,$a+b$ を答えてください.

解答形式

半角数字で解答してください.

BMC002-E

MARTH 自動ジャッジ 難易度:
2年前

14

直方体 $ABCD-EFGH$があり, $AB=\sqrt{2},AD=2023\sqrt{2},AE=2024\sqrt{2}$ です. 三角形 $BDE$ の面積を求めてください.

自作問題1

aonagi 自動ジャッジ 難易度:
19月前

19

問題文

一辺の長さが $1$ の立方体 $1800$ 個から構成される,長さ $10,12,15$ の辺からなる直方体があります.
このとき,直方体の対角線のうちの $1$ つについて,これが内部を通過する立方体の個数を求めてください.

ただし,立方体の内部とは,頂点や辺・面そのものを含まないものとして考えます.

解答形式

求めるべき値は非負整数値として一意に定まるので,これを解答してください.