整数問題

MARTH 自動ジャッジ 難易度: 数学 > 高校数学
2023年12月28日7:41 正解数: 11 / 解答数: 28 (正答率: 39.3%) ギブアップ数: 4
整数

全 28 件

回答日時 問題 解答者 結果
2024年8月10日0:02 整数問題 mogura
正解
2024年4月12日19:59 整数問題 Tehom
正解
2024年4月12日18:44 整数問題 Tehom
不正解
2024年4月12日18:38 整数問題 Tehom
不正解
2024年3月26日21:20 整数問題 0__citrus
不正解
2024年3月26日21:17 整数問題 0__citrus
不正解
2024年3月26日21:16 整数問題 0__citrus
不正解
2024年3月23日11:55 整数問題 noname
不正解
2024年3月15日0:17 整数問題 ゲスト
正解
2024年3月15日0:11 整数問題 ゲスト
不正解
2024年3月15日0:05 整数問題 ゲスト
不正解
2024年1月4日16:35 整数問題 ゲスト
正解
2023年12月30日15:10 整数問題 Furina
正解
2023年12月30日15:05 整数問題 Furina
不正解
2023年12月30日11:19 整数問題 J_Koizumi_144
正解
2023年12月30日10:57 整数問題 J_Koizumi_144
不正解
2023年12月28日22:06 整数問題 naoperc
正解
2023年12月28日17:27 整数問題 sdzzz
不正解
2023年12月28日17:25 整数問題 sdzzz
不正解
2023年12月28日17:25 整数問題 sdzzz
不正解
2023年12月28日17:23 整数問題 sdzzz
不正解
2023年12月28日16:09 整数問題 bzuL
正解
2023年12月28日15:15 整数問題 ゲスト
正解
2023年12月28日15:13 整数問題 ゲスト
不正解
2023年12月28日15:12 整数問題 ゲスト
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

座王001(サドンデス5)

shoko_math 自動ジャッジ 難易度:
9月前

18

問題文

$1,2,3,4,5,6,7,8,9$ を並べ替えてできる $9$ 桁の正の整数のうち $99$ の倍数であるものの最大値を求めてください.$\

解答形式

半角数字で解答してください.

座王001(サドンデス3)

shoko_math 自動ジャッジ 難易度:
9月前

11

問題文

$101\times101$ のマス目の各マスには $0,1$ のいずれかが書かれており,どの $2\times2$ のマス目についても $0,1$ が少なくとも $1$ つずつは書き込まれているとき,マス目に書かれた数の和の最大値を求めてください.

解答形式

半角数字で解答してください.

10次方程式

noname 自動ジャッジ 難易度:
9月前

9

一部問題文を変更しました。ご迷惑をおかけしてしまい申し訳ございません。

$a,b$を実数の定数とする。$x$についての方程式
$x^{10}+x^8+(1-2b)x^{6}-6x^4-2ax^3+b^2x^2+a^2+9=0$
の実数解を全て求めよ。また、その時の$a,b$の値を求めよ。

解答形式

(x,a,b)=(1,1,1),(2,3,4)...という感じで半角で入力してください。(順不同)
±は使わないでください。
底ができるだけ小さくなるようにしてください。
また、m/n乗はa^(m/n)というふうに解答してください。例:3^(2/3),5^(7/8)など

座王001(サドンデス6)

shoko_math 自動ジャッジ 難易度:
9月前

22

問題文

$S=\{1,2,3,4,5,6\}$ とします.$S$ の相異なる部分集合 $A,B,C$ の組であって,$A\subset B\subset C$ を満たすものの個数を求めてください.
(ただし,$A,B,C$ は空集合や $S$ に一致してもよいものとします.)

解答形式

半角数字で解答してください.

自作問題3

iwashi 自動ジャッジ 難易度:
7月前

11

問題文

任意の自然数$m,n$に対し、$A(m,n)$は
$$
A(1,n) = n, \quad A(m+1,n) = \sum_{k=1}^{n}A(m,k)
$$を満たす。このとき、$A(x,y)=2024$を満たす自然数$x,y$の組$(x,y)$を求めよ。

解答形式

$x+y$の総和を半角で解答してください。

200G

MrKOTAKE 自動ジャッジ 難易度:
4月前

11

問題文

AB=5, AC=7の△ABCがあり重心をG,内心をIとするとBC//GIであった. このとき△ABCの面積の2乗を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

座王001(A2)

shoko_math 自動ジャッジ 難易度:
9月前

12

問題文

実数 $x,y,z$ が
$\begin{cases}
x+y+z=\dfrac{7}{2}\\
x^2+y^2+z^2+3(xy+yz+zx)=14\\
x^2y+y^2z+z^2x+xy^2+yz^2+zx^2+2xyz=8
\end{cases}$
を満たすとき,$\dfrac{y^2}{x^2}+\dfrac{z^2}{y^2}+\dfrac{x^2}{z^2}$ の値として考えられるものの総和は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

座王001(A1)

shoko_math 自動ジャッジ 難易度:
9月前

16

問題文

$0$ でない相異なる実数 $a,b,c,d$ が以下の関係式を満たすとき,$a^2+b^2+c^2+d^2$ の値を求めてください.
$\begin{cases}
a^3-12a^2-34a+bcd=0\\
b^3-12b^2-34b+cda=0\\
c^3-12c^2-34c+dab=0\\
d^3-12d^2-34d+abc=0\\
\end{cases}$

解答形式

半角数字で解答してください.

漸化式

MARTH 自動ジャッジ 難易度:
9月前

12

正の実数の組 $(x_1,x_2,\dots,x_5)$ に対し, $a_1=b_1=1
$ および $n=1,\dots,5$ について以下を満たす実数の組 $(a_1,a_2,\dots,a_6,b_1,b_2,\dots,b_6)$ を考えます.
$$a_{n+1}=x_n a_n-n b_n,\quad b_{n+1}=x_n b_n$$
$b_6=100$ となるとき, $a_6$ として取りうる値には最大値が存在し, それを $M$ とします. $M$ の最小多項式 $P$ が存在するので, $P(500)$ を求めてください. ただし, $P$ の最高次の係数は $1$ とします.

2つの正方形と円

Fuji495616 自動ジャッジ 難易度:
10月前

8

問題文

下図は、2つの正方形と円を組み合わせた図形です。点(●)は小さい正方形の辺を4等分する点で、円は大きい正方形に内接しています。大きい正方形の面積が60㎠のとき、小さい正方形の面積は何㎠ですか。

解答形式

半角数字で入力してください。
例)10

整数問題7/19

miq_39 自動ジャッジ 難易度:
16月前

7

問題文

$p^{2}q^{3}+r^{2}=s^{4}$ を満たす素数の組 $(p,q,r,s)$ は $n$ 組あり,それぞれの組について $S=p+q+r+s$ を求めると,$S$ の総積は $N$ である.
$n$ および $N$ の値を求めよ.

解答形式

一行目に $n$ の値を,二行目に $N$ の値を,それぞれ半角数字で解答してください.

座王001(サドンデス2)

shoko_math 自動ジャッジ 難易度:
9月前

8

問題文

三角形 $ABC$ の辺 $AB,AC$ 上に ${BC}\parallel{DE}$ となるよう $D,E$ をとり,さらに,$D,F,G,E$ がこの順に並ぶように点 $F,G$ を線分 $DE$ 上にとる.さらに,辺 $BC$ と直線 $AF,AG$ との交点をそれぞれ $H,I$ とする.
三角形 $ADF$,四角形 $FGIH$,$AEG$ の面積がそれぞれ $3,5,8$ であるとき,三角形 $ABC$ の面積の最小値は正の整数 $a,b$ および平方因子をもたない正の整数 $c$ を用いて $a+b\sqrt{c}$ と表せるので,$a+b+c$ の値を解答してください.

解答形式

半角数字で解答してください.