2024年(令和6年)の虫食算(1)

tb_lb 自動ジャッジ 難易度: 数学 > 算数
2024年1月1日20:19 正解数: 55 / 解答数: 117 (正答率: 47.0%) ギブアップ不可
パズル 西暦問題 虫食算 2024年問題

全 117 件

回答日時 問題 解答者 結果
2024年1月10日19:26 2024年(令和6年)の虫食算(1) ゲスト
不正解
2024年1月10日19:15 2024年(令和6年)の虫食算(1) ゲスト
正解
2024年1月10日19:15 2024年(令和6年)の虫食算(1) ゲスト
不正解
2024年1月10日17:45 2024年(令和6年)の虫食算(1) ゲスト
不正解
2024年1月10日17:00 2024年(令和6年)の虫食算(1) ゲスト
不正解
2024年1月10日15:42 2024年(令和6年)の虫食算(1) ゲスト
正解
2024年1月10日15:41 2024年(令和6年)の虫食算(1) ゲスト
正解
2024年1月10日14:07 2024年(令和6年)の虫食算(1) ゲスト
正解
2024年1月10日14:06 2024年(令和6年)の虫食算(1) ゲスト
不正解
2024年1月10日8:22 2024年(令和6年)の虫食算(1) ゲスト
正解
2024年1月10日7:43 2024年(令和6年)の虫食算(1) ゲスト
正解
2024年1月10日6:36 2024年(令和6年)の虫食算(1) sheknow
正解
2024年1月10日1:35 2024年(令和6年)の虫食算(1) ゲスト
正解
2024年1月10日1:15 2024年(令和6年)の虫食算(1) ゲスト
正解
2024年1月10日1:15 2024年(令和6年)の虫食算(1) ゲスト
正解
2024年1月10日1:14 2024年(令和6年)の虫食算(1) ゲスト
不正解
2024年1月10日0:59 2024年(令和6年)の虫食算(1) krad
不正解
2024年1月10日0:56 2024年(令和6年)の虫食算(1) krad
不正解
2024年1月10日0:52 2024年(令和6年)の虫食算(1) krad
不正解
2024年1月9日21:27 2024年(令和6年)の虫食算(1) ゲスト
不正解
2024年1月9日20:21 2024年(令和6年)の虫食算(1) ゲスト
正解
2024年1月9日20:12 2024年(令和6年)の虫食算(1) ゲスト
正解
2024年1月9日20:10 2024年(令和6年)の虫食算(1) ゲスト
不正解
2024年1月9日16:19 2024年(令和6年)の虫食算(1) ゲスト
正解
2024年1月9日16:16 2024年(令和6年)の虫食算(1) ゲスト
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています


${}$ 西暦2024年問題第6弾です。いよいよ整数問題のお出ましとなりました。ある程度は手を動かす必要がありますが、あることに気づけば調べる候補をぐっと減らすことができます。約数の個数を求めるのが面倒な方はWolfram|Alpha https://www.wolframalpha.com なども併用して構いません。

解答形式

${}$ 解答は求める$n$の最小値をそのまま入力してください。
(例)$n=2106$ → $\color{blue}{2106}$

交わる円と三角形

tb_lb 自動ジャッジ 難易度:
14月前

19

【補助線主体の図形問題 #115】
 今週の図形問題です。今回は重めの問題にしてみました。とはいえ、補助線が活躍するのはいつも通りです。じっくり腰を据えて挑戦してください!

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

16月前

16

【補助線主体の図形問題 #109】
 今週の図形問題です。今回はシンプルな見た目だけに、補助線が大いに活躍します。その分というわけではありませんが、計算は重めです。ぜひじっくりとお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

3つの正九角形の求角

tb_lb 自動ジャッジ 難易度:
18月前

13

【補助線主体の図形問題 #099】
 今週の図形問題は、通算99問目ということで正九角形を取り上げてみました。タネがわかれば余裕で暗算処理可能です。まずは紙&筆記具を使わずに頭の中で補助線を思い浮かべながら挑戦してみてください。

解答形式

${\renewcommand\deg{{}^{\circ}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

16月前

8

【補助線主体の図形問題 #107】
 今週の図形問題です。3連休の中日、ちょっと重めの問題を用意しました。そのかわり(想定解では)計算はわずか、暗算で処理できる分量です。どうかお好きな解法でお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。


${}$ 西暦2024年問題第2弾です。第1弾に引き続き虫食算で、今回は割り算にしてみました。数学的手法(約数や倍数、偶奇性や剰余、不等式による絞り込み、などなど)を適宜用いることで面倒な場合分けや仮置きを軽減できるよう仕込んでいるのは変わりません。パズル的に解くのもよし、数学的にゴリゴリ解くのもよし、どうぞお好きなようにお楽しみください!

解答形式

${}$ 解答は2行目を「被除数÷除数」の形で入力してください。
(例) $2024 \div 102 = 19$ 余り $86$ → $\color{blue}{2024 \text{÷} 102}$
 入力を一意に定めるための処置です。数字は半角で、「÷」の演算記号はTeX記法(\div)でも、絵文字や環境依存文字でもなく、全角記号の「÷」でお願いします。空白(スペース)も入れる必要はありません。

10月前

9

${}$ 西暦2024年問題第4弾です。今回は連分数を素材にしてみました。一風変わった解き心地の問題をお楽しみください。

解答形式

${}$ 解答は有理数$a$と$b$の値を2行に分けて入力してください。値が整数のときにはそのまま整数表現で、非整数のときには既約分数○/△の形で入力することにします。「$a=$」「《1行目》」などの入力は必要ありません。
(例)$a=2024$、$b=\dfrac{1}{4}$ → 《1行目》$\color{blue}{2024}$、《2行目》$\color{blue}{1/4}$

三角形の重心と内心

tb_lb 自動ジャッジ 難易度:
15月前

10

【補助線主体の図形問題 #110】
 今週の図形問題です。このところ五心の活躍が多いですが、今回登場するのは重心と内心。この2点が平行線でつながっています。これらの図形が織りなす性質を楽しんでください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

10月前

21

${}$ 西暦2024年問題第3弾です。今回は中学入試風の規則性の問題となりました。軽く解いてやってください。

解答形式

${}$ 解答は黒石の個数を単位なしでそのまま入力してください。
(例)103個 → $\color{blue}{103}$

素数の方程式

hkd585 自動ジャッジ 難易度:
2年前

15

問題文

$2^{p+q}-p^{q}=13$を満たす素数$\left(p,q\right)$をすべて求めよ.

解答形式

$p^{2}+q^{2}$の値を,半角数字で解答してください.答えが複数ある場合は,値の小さい順に,1行に1つずつ書いてください.

(例)
解答が$\left(p,q\right)=\left(2,7\right),\left(5,11\right)$のときは,以下のように解答します.

53
146


【補助線主体の図形問題 #101】
 こちらは図形問題通算100問目 https://pororocca.com/problem/1251/ の続きにあたる問題です。100問目を正解したうえでこちらに挑戦するのをお勧めします。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。


【補助線主体の図形問題 #123】
 ご無沙汰ぶりの&2023年最後の図形問題です。今年も僕の出題を解いていただきありがとうございました。来年も引き続きよろしくお願いします。よいお年を!

解答形式

${
\renewcommand\deg{{}^{\circ}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

告知

${}$ 2024年も年始1月1日~7日に西暦を織り込んだ数学・パズルの問題をお送りする予定です。今回も虫食算からお目見えしようと思っています。どうぞよろしくお願いします!