余りの計算

noname 採点者ジャッジ 難易度: 数学 > 高校数学
2024年2月23日20:08 正解数: 5 / 解答数: 9 (正答率: 55.6%) ギブアップ不可
整数

全 9 件

回答日時 問題 解答者 結果
2024年8月8日7:29 余りの計算 Americium243
正解
2024年7月16日10:36 余りの計算 Weskdohn
正解
2024年7月6日22:28 余りの計算 Weskdohn
不正解
2024年5月4日22:43 余りの計算 uran
不正解
2024年3月3日8:09 余りの計算 ゲスト
不正解
2024年3月2日13:33 余りの計算 0__citrus
正解
2024年2月26日19:29 余りの計算 nmoon
正解
2024年2月26日19:23 余りの計算 natsuneko
正解
2024年2月26日19:09 余りの計算 natsuneko
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

N1

orangekid 自動ジャッジ 難易度:
15月前

15

問題文

次の方程式の整数解を求めよ。
ただし、$p, q$は非負整数である。
$$
x^2-15x+3^p-2^q=0
$$

解答形式

半角数字で小さい順につなげて入力してください。
例 $x=-4,-1,0,3,4$の時 -4-1034

有理化問題

noname 自動ジャッジ 難易度:
15月前

18

$\frac{1}{\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{5}+\sqrt{6}+\sqrt{8}+\sqrt{10}}$
を有理化し、その分母を答えよ。

解答が間違っていたため修正いたしました。ご迷惑をおかけしてしまい申し訳ございません。

解答形式

既約分数にしてその分母を整数値でお答えください。

整数

kiriK 自動ジャッジ 難易度:
7月前

17

$
f(x,n)=x^{2^{n+1}}-x^{2^{n}}とおく。
$
$
f(a,b) と f(c,d) の最大公約数として
考えられるものの最小値を求めよ。
$
$
ただし、a,b,c,dはいずれも2以上の自然数で、a\neq b \neq c \neq d とする。
$

10次方程式

noname 自動ジャッジ 難易度:
15月前

9

一部問題文を変更しました。ご迷惑をおかけしてしまい申し訳ございません。

$a,b$を実数の定数とする。$x$についての方程式
$x^{10}+x^8+(1-2b)x^{6}-6x^4-2ax^3+b^2x^2+a^2+9=0$
の実数解を全て求めよ。また、その時の$a,b$の値を求めよ。

解答形式

(x,a,b)=(1,1,1),(2,3,4)...という感じで半角で入力してください。(順不同)
±は使わないでください。
底ができるだけ小さくなるようにしてください。
また、m/n乗はa^(m/n)というふうに解答してください。例:3^(2/3),5^(7/8)など

No.02 集合と要素の個数

Prime-Quest 自動ジャッジ 難易度:
16月前

5

問題

$(1)$ 集合 $S_n=\{nx\mid x^3\leqq 2x^2+5x-6\}$ に対し,整数 $k\notin\overline{S_1\cap S_2}\cup S_3$ は何個あるか.
$(2)$ $3$ 桁の素数は $200$ 個未満か.

解答形式

命題は真なら $1$,偽なら $0$ として,$(1),(2)$ の和を半角数字で入力してください.

方程式の解の個数

tsukemono 自動ジャッジ 難易度:
15月前

13

問題文

$a$を定数とする。
このとき、$x$についての方程式$|x²+6x-7|-a=0$ の実数解の個数が3個になるような$a$の値を求めよ。

解答形式

a=𓏸𓏸というふうに解答してください。
また、全て半角で解答してください。
答えのみ入力してください。

2024問題

noname 自動ジャッジ 難易度:
15月前

13

$a!+b!+5c^2=2024$となる自然数$a,b,c$の組$(a,b,c)$を全て求めよ。

**入力形式**
(a,b,c)=(1,1,1),(2,3,4),...というふうに半角で入力してください。区切る時は,を用いてください。(順不同)

問題

noppi_kun 自動ジャッジ 難易度:
2月前

15

問題文

鋭角三三三角形 $ABCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC$ において,その外心を $O$,垂心を $H$,内接円を $\omega$ としたとき,$O,H$ はともに $\omega$ 上にあり,$\omega$ の半径は $1$ であった.
この条件下で線分 $OH$ の長さとしてありうる値の総積を $xxxxxxxxxx$ とする.$xxxxxxxxxx$ の最小多項式を $P$ として,$|P()|$ の値を解答せよ.ただし,$xxxxxxxxxx$ が最小多項式をもつことが保証される.

解答形式

半角数字を用いて解答せよ.解答すべき値が $$ でないことは保証される.

求値問題8

Kinmokusei 自動ジャッジ 難易度:
4年前

6

問題文

共通部分を持たない2円と、その共通接線があります。図中の同じ色で示した線分の長さが等しいとき、2円の半径比を求めてください。

※図は正確でないことに注意

解答形式

大円の半径を$R_1$、小円の半径を$R_2$とすると、$R_1:R_2=\fbox ア:\fbox イ$です。文字列 アイ を解答してください。
例:$R_1:R_2=5:2$ であれば 52 と解答

求面積問題21

Kinmokusei 自動ジャッジ 難易度:
4年前

6

問題文

3つの正五角形がそれぞれ1頂点ずつを共有して図のように配置されています。緑で示した三角形の面積が22のとき、赤い三角形の面積を求めてください。

解答形式

半角数字で回答してください。

No.03 分数式の最小値

Prime-Quest 自動ジャッジ 難易度:
16月前

7

問題

$0,a,b,c$ は相異なる実数で,$a^3b+b^3c+c^3a=ab^3+bc^3+ca^3$ を満たすとき,次の値を求めよ.$$\min_{a,b,c}\dfrac{(a^3+b^3+c^3)(a^4+b^4+c^4+50)}{a^5+b^5+c^5}$$

解答形式

半角数字で入力してください.

求面積問題23

Kinmokusei 自動ジャッジ 難易度:
3年前

11

問題文

半円の内部に正方形を2つ、図のように配置しました。赤い線分の長さ(=2つの正方形の一辺の差)が3であるとき、青で示した部分の面積と緑で示された部分の面積の差を求めてください。

解答形式

半角数字で解答してください。