${999}$を2以上の最小の$2$つの立方数の差で表せ。
a>b>1の自然数を用いてa^3-b^3というふうに表せるのでabと2つの整数を連続して半角で書いてください。 (例:15^3-3^3なら解答は153)
ラマヌジャン
タクシー数
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
√5の小数部分をaとするとき、a-√5の値を求めよ。
数字や符号は半角で解答してください
5進数で表された[2024]を2進数で表せ。
数字のみでOK
次の計算をせよ。 $$ \frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90} $$
分子/分母 の形で解答してください 既約分数で解答してください 例 1/3
2024^2023の正の約数の個数はいくつか?
半角で回答 例)100
$\dfrac{777777777}{888888}$ は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので,$a+b$ の値を解答してください.
半角数字で解答してください.
自然数a b c について abc-ab-a=17 a<b<c となる自然数のa b c の組の数を答えなさい
半角数字で答えてください
$a$を定数とする。 このとき、$x$についての方程式$|x²+6x-7|-a=0$ の実数解の個数が3個になるような$a$の値を求めよ。
a=𓏸𓏸というふうに解答してください。 また、全て半角で解答してください。 答えのみ入力してください。
$a!+b!+5c^2=2024$となる自然数$a,b,c$の組$(a,b,c)$を全て求めよ。
**入力形式** (a,b,c)=(1,1,1),(2,3,4),...というふうに半角で入力してください。区切る時は,を用いてください。(順不同)
正$n$角形の対角線の本数が素数になるような自然数$n$を全て求めてください。
$n$としてあり得る数を半角で小さい順に1列に1つずつ縦に解答してください。 例:2,3と答えたい時 2 3 と解答してください。
$1$ 以上 $100000$ 以下の整数から無作為に1つ選ぶとき,全ての桁の数がそれぞれ素数になる確率は,互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せます.$a+b$ を解答してください.
例えば,$23$ は各桁の数が $2$ と $3$ で,これは全ての桁の数が素数になります. $17$ は各桁の数が $1$ と $7$ ですが,$1$ は素数ではないので全ての桁の数が素数にはなりません.
非負整数を半角で回答してください。
問題文を一部変更しましたが答える内容は変わっていません。
$2^{20}!!$ は $2$ で何回割り切れますか?
半角数字でお答え下さい。 計算機はご自由にお使いください。
$12$桁の整数$111111111111$の素因数の総和を求めてください. 但し,素因数の1つとして4桁の素数が含まれます.
整数で答えてください.