bMC_G

bzuL 自動ジャッジ 難易度: 数学 > 高校数学
2024年7月14日21:00 正解数: 11 / 解答数: 19 (正答率: 57.9%) ギブアップ数: 3
この問題はコンテスト「bzuL Math Contest」の問題です。

全 19 件

回答日時 問題 解答者 結果
2024年7月24日19:22 bMC_G ゲスト
正解
2024年7月15日14:59 bMC_G Tehom
正解
2024年7月15日14:10 bMC_G ゲスト
不正解
2024年7月14日23:17 bMC_G mogura
正解
2024年7月14日22:56 bMC_G epsug
正解
2024年7月14日22:48 bMC_G epsug
不正解
2024年7月14日22:47 bMC_G natsuneko
正解
2024年7月14日22:42 bMC_G mogura
不正解
2024年7月14日22:34 bMC_G Tehom
不正解
2024年7月14日22:32 bMC_G epsug
不正解
2024年7月14日22:31 bMC_G Tehom
不正解
2024年7月14日22:25 bMC_G arararororo
正解
2024年7月14日22:24 bMC_G shoko_math
正解
2024年7月14日22:23 bMC_G arararororo
不正解
2024年7月14日22:14 bMC_G MARTH
正解
2024年7月14日21:57 bMC_G imabc
正解
2024年7月14日21:33 bMC_G Furina
正解
2024年7月14日21:31 bMC_G pomodor_ap
正解
2024年7月14日21:29 bMC_G noname
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

bMC_E

bzuL 自動ジャッジ 難易度:
4月前

14

問題文

$10$ 進数での桁和が $2500$ となる正整数であって, $2024$ の倍数となるものうち,最小のものを $M$ とします.$M$ を $10$ 進表記したときの $10^{k-1}$ の位の値を $M_k$ としたとき,$1\leq M_k \leq 8$ を満たす $k$ の総積を $10000000$ で割った余りを答えてください.
ただし,以下の $10^n$ を $2024$ で割った余りに関する表を用いて構いません.

$$
\begin{array}{c:ccccccccc}
n & 3 &4 & 5 & 6 & 7 & 8 & 9 \\
\hline
10^n\pmod{2024} &1000 & 1904 &824& 144 & 1440& 232& 296
\end{array}\\\\
\begin{array}{ccccccccc}
10 & 11& 12 & 13 &14 & 15 & 16 & 17 & 18\\
\hline
936& 1264 & 496 &912 & 1024 &120 &1200 & 1880 & 584
\end{array}\\\\
\begin{array}{ccccccccc}
19 & 20 & 21 & 22 & 23 & 24 &25\\
\hline
1792 & 1728 & 1088 & 760 & 1528 & 1112 & 1000
\end{array}
$$

解答形式

半角数字で解答してください.
たとえば $M=9876543210$ であれば,$M_1=0,M_2=1,\ldots,M_{10}=9$ となるため,$1\leq M_k \leq 8$ を満たす $k$ の総積は $2 \times \cdots \times 9= 362880$ となります.

bMC_C

bzuL 自動ジャッジ 難易度:
4月前

31

問題文

凸五角形 $ABCDE$ は以下を満たします.
$$
\begin{cases}
AB=BC=CD=DE \\\\
2\angle{BAE} = \angle{CBA}\\\\
2\angle{ECA} = \angle{AEC} = \angle{BAE} + 30^{\circ}
\end{cases}
$$
このとき,互いに素な正整数 $a,b$ を用いて $\angle{EDB}=\bigg(\dfrac{a}{b}\bigg)^{\circ}$と表すことができるので,$a+b$ を答えてください.

解答形式

半角数字で解答してください.

D

nmoon 自動ジャッジ 難易度:
21日前

10

問題文

4次方程式 $x^4-4x^3-21x^2-8x+4=0$ の4つの相異なる実数解を,小さいものから順に $a_{1},a_{2},a_{3},a_{4}$ とします.このとき,以下の値を求めてください:

$$\displaystyle\frac{1}{a_{1}^2-a_{1}a_{2}+a_{2}^2}+ \displaystyle\frac{1}{a_{3}^2-a_{3}a_{4}+a_{4}^2} $$

解答形式

互いに素な2つの正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表されるので,$a+b$ を求めてください.

bMC_B

bzuL 自動ジャッジ 難易度:
4月前

38

問題文

$728^{(729^{730})} + 730^{(729^{728})}$ は $3$ で最大何回割れますか.

解答形式

半角数字で解答してください.

bMC_A

bzuL 自動ジャッジ 難易度:
4月前

57

問題文

あるサバイバルゲームには $2024$ 人の人が参加しており,以下を $2022$ 回繰り返します.

  • 残っている人の中からランダムに(等しい確率で)二人を選ぶ.その後,二人が対戦し,どちらかがゲームから脱落する.参加者の実力は同じであるため,脱落する側は等しい確率で選ばれる.

このとき,最後に残った二人に一度も対戦をしていない人が含まれる確率を求めてください.ただし,求める確率は互いに素な二つの正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表すことができるため,$a+b$ を解答してください.

解答形式

半角数字で解答してください.

C

nmoon 自動ジャッジ 難易度:
21日前

7

問題文

三角形 $ABC$ の外心を $O$,垂心を $H$,外接円を $\Gamma$ とする.そして,以下のように点を4つとる.

  • 直線 $BH$ と $\Gamma$ との交点を $P(\not=B)$ とする.
  • 直線 $PO$ と $\Gamma$ との交点を $Q(\not=P)$ とする.
  • 直線 $QH$ と $\Gamma$ との交点を $R(\not=Q)$ とする.
  • 直線 $RO$ と $\Gamma$ との交点を $S(\not=R)$ とする.

このとき,3点 $ C,H,S$ が同一直線上にあった.

$$AH=17 , AO=11$$

のとき,三角形 $ABC$ の面積を求めてください.

解答形式

答えを2乗した値は,互いに素な2つの正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表されるので,$a+b$ を求めてください.

初等幾何サンプル問題

bzuL 自動ジャッジ 難易度:
8月前

26

問題文

三角形 $ABC$ の外接円を $\Gamma$ とします.辺 $BC$ 上に点 $X$ をとります.$B,X$ を通り,$\Gamma$ と接する円を $\Omega_1$ とし,$C,X$ を通り,$\Gamma$ と接する円を $\Omega_2$ とします.$\Omega_1$ と $\Omega_2$ は二点で交わっており,$X$ でない方の交点を $Y$ とします.直線 $XY$ は点 $A$ を通り,線分 $XC$ の垂直二等分線も点 $A$ を通りました.
$$BX = 4,CX=1$$を満たす時,三角形 $ABC$ の面積の二乗を求めてください.ただし,求める値は互いに素な二つの正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表すことができるので,$a+b$ を解答してください.

解答形式

非負整数を半角で入力してください.

PGC005 (C)

pomodor_ap 自動ジャッジ 難易度:
2日前

25

問題文

$AB=5, AC=7$ なる三角形 $ABC$ について,$A$ から $BC$ に下ろした垂線と円 $ABC$ の交点を $D(\neq A)$,$BC$ の中点を $M$ とします.$\angle AMD=90^{\circ}$ であるとき,$BC$ の長さの四乗を求めてください.

OMC不採用問題改題

bzuL 自動ジャッジ 難易度:
11月前

30

問題文

$14^3$ の $16$ 個の正の約数を並び替えた数列を $a_1,\ldots,a_{16}$ とおき,$15^3$ の $16$ 個の正の約数を並び替えた数列を$b_1,\ldots,b_{16}$ とおきます.この二つの数列のスコア
$$
\sum_{k=1}^{16} \frac{a_k}{b_k}
$$
で定めます.数列 $a,b$ の組として考えられるものは $(16!)^2$ 通りありますが,これらの組におけるスコアの(相加)平均を求めてください.ただし,求める値は互いに素な正整数 $p,q$ を用いて,$\dfrac{p}{q}$ と表されるため,$p+q$ を解答してください.

解答形式

半角数字で解答してください.

bMC_F

bzuL 自動ジャッジ 難易度:
4月前

15

問題文

ある三角形の内心を中心とする半径 $2024$ の円が,その三角形の頂点のうちの一つと,その三角形の外心,垂心を通りました.この三角形の外接円の半径としてあり得る値の総和の整数部分を求めてください.

解答形式

半角数字で解答してください.

bMC_D

bzuL 自動ジャッジ 難易度:
4月前

46

問題文

非負実数 $x,y,z$ が $x+y+z=1$ を満たすとします.
$$
x^{5001}y^{5002} + y^{5001}z^{5002} +z^{5001}x^{5002}
$$
の最大値は,互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表すことができます.$a+b$ を素数 $4999$ で割った余りを求めてください.

解答形式

半角数字で解答してください.

整数問題

MARTH 自動ジャッジ 難易度:
11月前

28

$0$ 以上 $6$ 以下の整数からなる組 $(a_1,a_2,a_3,a_4,a_5)$ のうち以下を満たすものの個数を求めてください.
$$(a_1a_2)^3+(a_2a_3)^3+(a_3a_4)^3+(a_4a_5)^3+(a_5a_1)^3\equiv0\pmod{7}$$