xy平面上にて、中心が直線y=3x上にあり、直線2x+y=0に接し、点(2,1)を通る円の方程式は(x-a)^2+(x-b)^2=r^2である。 a、b、r^2の値をそれぞれ求めよ。
a○b△R□ ○△□のところに答えの数字を入力してください。 r^2はRと表記してください。 a=2 b=3 r^2=4の場合 a2b3R4と入力
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
aiueaiuの7字を並べるとき少なくとも1つの「ai」が「ue」よりも前にあるのは何通りか。
例)半角英数字。
点の定義は次をチェック(https://pororocca.com/problem/2047/) $円X,X',ω$に接する円の内,小さい方の円$T'$の半径を求めよ.
答えは互いに素な整数$a,b,c,d$で,$\frac{a+b√c}{d}$と書けるので,$a+b+c+d$を求めて下さい.但しd>0. 尚,半角で打ち込むこと.
$a$と$r$を正の実数とし, $a>\frac{1}{2}$であるものとします. 放物線$K$と円$L$を次のように定めます. $$K: y=x^2\,\,,\,\,L: x^2+(y-a)^2=r^2$$このとき, $K$と$L$は接しています.その接点を第2象限にあるものを$A$, 第1象限にあるものを$B$とし, 円$L$の中心を$P$, 直線$AP$と円$L$の$A$でない交点を$C$, $x$軸との交点を$Q$とします.また, △$ABC$の面積を$S$, 四角形$PQOB$の面積を$T$とするとき, 次の等式を満たしました.$$\frac{T}{S}=689$$$a$は1つの非負整数に定まりますのでその値を求めてください.
非負整数を半角で入力してください.
例)(1)はb√c/aとなるので、a,b,cの値をそれぞれ1,2,3行目に書いてください ⑵はdπ/eとなるので、d,eの値を4,5行目に書いてください
数列{a_n}を, a_1=log2 , a_(n+1)=(na_n+log(2n+1)+log2)/(n+1) によって定める。 このとき, この数列の一般項 a_n および 極限値 lim(n→∞) (a_n-logn) をそれぞれ求めよ。
記述解答(大雑把で良い)でお願いします。
半径$15$の円$ω$について,ある直径$AB$を考える. $AB$を三等分する点を順に$P,Q$とし(つまり$A・P・Q・B$の順に点が並ぶ), $AP$を直径とする円$X$を描く. また,$AB$に直交する直径$CD$について,同様に$R,S$を取り($C・R・S・D$の順),$CR$を直径とする円$X'$を描く. ここで,円$X$の接線の内,$CD$と平行で且つ円$X'$側のものを直線$F$,円$X'$の接線の内,$AB$と平行で且つ円$X$側のものを直線$G$とする. 直線$F,G,$円$ω$に接する円$T$として考えられるものは$2$つあるが,そのうち小さい方の半径を求めよ.
答えは整数$n,m,l$で$n√m+l$と書ける. $n+m+l$を求めて下さい. 尚,マイナス含め,全て半角で打ち込むこと.
続編(normal):https://pororocca.com/problem/2048/
級数 $$1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}-\frac{1}{7}-\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}-\frac{1}{15}-\frac{1}{16}+\cdots$$ の収束値を求めよ. ただし, この級数の第 $n$ 項の絶対値は $\dfrac{1}{n}$ であり, 各項の符号は $4$ 項ごとに交代する.
収束値は $\fbox{A}\text{ - }\fbox{F}$ をいずれも自然数として最も簡単な形で $\displaystyle{\frac{\fbox{A}+\fbox{B}\sqrt{\fbox{C}}}{\fbox{D}}\pi+\frac{\log{\fbox{E}}}{\fbox{F}}}$ と 表されます. 文字列 $\fbox{A}\,\fbox{B}\,\fbox{C}\,\fbox{D}\,\fbox{E}\,\fbox{F}$ を解答してください.
5進数で表された[2024]を2進数で表せ。
数字のみでOK
長さnのロープがあるとき、ロープの始点と終点をくっ付けて出来る平面図形の最大の面積または近似値を求めよ。ただし、ロープは自由自在に曲げられ、無限の頂点を持つものとする。
答えとその理由を書いてください。
四角形ABCD、四角形GHCFはそれぞれ正方形で、1辺の長さはそれぞれ10cm、4cmです。また、DCとFC、BCとHCはぴったり重なっているとする。また、四角形IBKJは長方形で、IJは2cm、IBは4cmとし、ABとIB、BCとBKはぴったり重なっているとする。更に、AJとDGの延長とBCとの交点をEとし、Gを通りΔADEの面積を2等分する線とADとの交点をP、Jを通りΔADEの面積2等分する線と、ADとの交点をRとする。さらにPGの延長とBCとの交点をQ、RJとABとの交点をSとする。PGとRJの交点をOとする。四角形OJEQの面積を求めよ。
分数は/で表してください。 例)2分の9は 9/2 で表す。
A,B,Cの三人がこの順で時計回りに座って次のようなゲームをする。 (i)始め、AはCと書かれたカード、BはAと書かれたカード、Cは無地のカードとBのカードを持っている。 (ii)Aから時計回り順で、反時計回りに隣の人が持つカードから1つを等確率で選んで引く。 (iii)(ii)を繰り返して、自分の名前の書かれたカードを最初に引いた人を勝ちとする。 A,B,C,がが勝つ確率をそれぞれ、$a$,$b$,$c$とする。$a$,$b$,$c$をそれぞれ求めよ。
半角英数字で(分子)/(分母)として既約分数で解答してください。(例)35/216 $a$を1行目、$b$を2行目、$c$を3行目に、解答してください。完答で正解とします。 8/25追記 解説を公開しました。
$\sin1°$ は有理数か。
証明を簡潔に記述してください。