500C

MARTH 自動ジャッジ 難易度: 数学 > 競技数学
2024年6月23日20:41 正解数: 6 / 解答数: 8 (正答率: 75%) ギブアップ数: 2
#組み合わせ

全 8 件

回答日時 問題 解答者 結果
2025年4月13日16:03 500C ZIRU
正解
2025年3月31日15:57 500C J_Koizumi_144
正解
2024年9月4日16:00 500C tima_C
不正解
2024年8月9日19:57 500C Uirou
正解
2024年8月9日19:51 500C Uirou
不正解
2024年7月19日19:26 500C iwashi
正解
2024年6月24日23:55 500C natsuneko
正解
2024年6月24日18:25 500C bzuL
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

400A

MARTH 自動ジャッジ 難易度:
13月前

8

関数列 $\{f_n\}_{n=0,1,\dots}$ が以下を満たします.

  • $f_{0}(x)=e^{e^x}$
  • $f_{n}(x)=\dfrac{d}{dx}f_{n-1}(x)\quad (n=1,2,\dots)$.

また, 実数列$\{A_n\}_{n=1,2,\dots}, \{B_n\}_{n=1,2,\dots}$を以下のように定義します.

  • $\displaystyle A_n=\lim_{x\rightarrow-\infty}e^{-x}f_{n}(x)$ .
  • $\displaystyle B_n=\lim_{x\rightarrow-\infty}e^{-x}\big(e^{-x}f_{n}(x)-A_n)$.

$B_{24}$ の値を求めてください.

QMT002(自作問題1問目)

shoko_math 自動ジャッジ 難易度:
13月前

14

問題文

十万,一万,千,百,十,一の位がそれぞれ $a,b,c,d,e,f$ であるような $6$ 桁の整数を $A$ とし,十万,一万,千,百,十,一の位がそれぞれ $e,f,a,b,c,d$ であるような $6$ 桁の整数を $B$ とします.
相異なる $1$ 桁の整数 $a,b,c,d,e,f$ が $e>a>0$ を満たしながら動くとき,$A$ と $B$ の最大公約数の最大値を求めてください.

解答形式

半角数字で解答してください.


問題文

三角形 $ABC$ があり,以下が成り立っています:

$$AB = 7 , \angle A + 2\angle C = 60^{ \circ } .$$

いま,辺 $BC$ 上に $\angle CAP = 3\angle BAP$ をみたす点 $P$ をとり,さらに辺 $AC$ 上に $\angle APQ = 2\angle ACB$ をみたす点 $Q$ をとったところ,$BQ = 2$ が成立しました.このとき,線分 $AC$ の長さは互いに素な正整数 $a , b$ を用いて $\dfrac{ a }{ b }$ と表せるので,$a + b$ を解答してください.

解答形式

半角数字で解答してください.

11月前

4

問題文

図のような、一目盛りが1cmの方眼に書いた図形があります。三角形ABCと三角形ACEは合同で、角ADF=90°です。DFは何cmですか。

解答形式

四捨五入して小数第2位まで、半角数字で答えてください。
例)$\frac{52}{3}$→17.33

自作問題5

iwashi 自動ジャッジ 難易度:
8月前

4

問題文

実数$x$は以下の条件をすべて満たす。

  • $x$は有理数であり整数でない。
  • $x$は$10$より大きい。
  • $x$を既約分数で表したとき、分母は$20$であり分子は$17$の倍数である。
  • $x-10$の小数点第一位を四捨五入した値と$\sqrt{x}$の小数点第一位を四捨五入した値は等しい。

このような$x$全てについて、$20x$の総和を求めよ。

自作問題C1

imabc 自動ジャッジ 難易度:
12月前

6

問題文

以下の条件を全て満たす $20001$ 個の整数の組 $(a_0,a_1,…,a_{20000})$ を 階段状な組 と定義します.

  • $a_0=a_{20000}=0$ .
  • $k=0,1,…,19999$ について $|a_{k+1}-a_k|=1$ .

また,階段状な組 $A=(a_0,a_1,…,a_{20000})$ に対して スコア $S(A)$ を以下のように定めます.

  • 以下の条件を全て満たす $1001$ 個の整数の組 $(x_0,x_1,…,x_{1000})$ の個数.
    $\quad$ ・ $k=0,1,…1000$ について $x_k$ は $0$ 以上 $20000$ 以下の 偶数
    $\quad$ ・ $k=0,1,…999$ について $x_k\lt x_{k+1}$ .
    $\quad$ ・ $a_{x_{1000}}=0$ .

階段状な組全てに対してスコア $S(A)$ の総和を求め,その値が $2$ で割り切れる最大の回数を求めてください.

解答形式

答えを入力してください.

数列の問題

matsukichi 自動ジャッジ 難易度:
15月前

4

問題文

$2000$ 以下の非負整数 $a$ に対し,数列 $c_{n}$ が以下をみたします.
$$c_{1}=a, c_{2}=2000-a, c_{n+2}=c_{n+1}+c_{n}$$
このとき,$c_{2^{4333}}$ が $47^2$ の倍数となるような $a$ としてありうる値の総和を解答してください.

解答形式

半角数字で解答してください.

方程式の実数解

RentoOre 自動ジャッジ 難易度:
13月前

7

問題文

$x$ についての方程式 $xe^{2\sqrt{x}}=9(\log{3})^2$ の実数解を求めよ。

解答形式

解をすべて答えてください。値の小さい順に1行目から入力してください。
なお,解答にあたって,特殊な数式は次のように入力してください。

対数:$\log_n{m}$ = \log_{n}{m}, $\log{m}$ = \log{m}
指数($\sqrt{m} = m^{\frac{1}{2}}$もすべて指数として入力してください):$n^{m}$ = n^{m}
分数:$\frac{a}{b}$ = \frac{a}{b}

音符の達人

YoneSauce 自動ジャッジ 難易度:
10月前

14

問題文

赤い音符と青い音符の二種類の音符を横に並べたものを譜面と呼びます.
以下の条件を同時に全て満たすような譜面がいくつあるかを求めてください.

  • その譜面の赤い音符と青い音符の合計はちょうど $17$ 個である.
  • その譜面の最も左の音符は赤い音符である.
  • その譜面の左から $2$ 番目の音符は青い音符である.
  • その譜面から任意の $3$ つの連続する音符を抜き出したとき,それが左から順に
    「赤い音符,青い音符,赤い音符」にならない
  • その譜面から任意の $3$ つの連続する音符を抜き出したとき,それが左から順に
    「青い音符,赤い音符,青い音符」にならない

解答形式

非負整数を半角数字で入力し解答してください。

SMC100(問題75)

shoko_math 自動ジャッジ 難易度:
13月前

7

問題文

正 $7$ 角形 $ABCDEFG$ の外側に正 $6$ 角形 $ABPQRS$ を描きます.
このとき,$\angle{EGP}-\angle{GPR}$ の値は度数法で互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

座王001(ボツ問題)

shoko_math 自動ジャッジ 難易度:
13月前

10

問題文

$\dfrac{1}{2},\dfrac{2}{3},\dfrac{3}{5},\dfrac{5}{8},\dfrac{8}{13},\dfrac{13}{21},\dfrac{21}{34},\dfrac{34}{55},\dfrac{55}{89}$ の中から( $2$ 個以上の)偶数個の異なる分数を選ぶ方法 $2^{8}-1$ 通りに対し,選んだ数の積を考えるとき,それらの総和は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

e進数!?

amberGames-777 自動ジャッジ 難易度:
13月前

10

問題文

100をe進数で表記すると何桁になるか。(整数部分のみ)

解答形式

半角数字+「桁」という文字(例:1桁)