$∠BAC=30°$、$BC =3$である$△ABC $について、$AB$の最大値を解答してください。
半角数字で解答してください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$\:2024≧a>b>c≧1\:$なる正整数の組$\:(a,b,c)\:$であって、$x^a+x^b+x^c+1\:$が$\:(x+1)\:$を因数に持つようなものは何通りあるか解答してください。
$AB=AC$なる鋭角二等辺三角形$ABC$において$AB$,$BC$の中点をそれぞれ$M$,$N$とし、$MC$の垂直二等分線と$AN$の交点を$P$とします。$\triangle ABC$の面積は$15$であり、$AP:PN=4:1$であるとき、$BC^4$を解答してください。
正の実数$x,y,z$が$$(x+1)y^2=(x−1)z^2=\frac{3}{5}xyz$$ を満たすとき、 $$\frac{z}{y}=?$$
例)?に入る数値を入力してください。
三角形 $ABC$ があり,外心を $O$ とした時以下が成り立ちました. $$ AB+AC=2BC,\quad AB\times AC=24,\quad AO=5 $$ この時,三角形 $ABC$ の内接円の半径の値を求めてください.ただし求める値は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.
半角数字で入力してください.
一辺の長さが $12$ の正方形 $ABCE$ の外部に点 $D$ を、三角形 $CDE$ が正三角形になるようにとります。 正方形 $ABCE$ の外接円と直線 $DE$ の交点のうち $E$ でない方を $F$ とするとき、$AF^2$ の値を解答してください。
半角数字で入力してください。
$AB=5, AC=7$の三角形$ABC$があり重心を$G$,内心を$I$とすると$BC //GI $であった. このとき三角形$ABC$の面積の$2$乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
中心が$O$の円と線分$AB$の二つの交点のうち$A$から近い順に$C,D$とすると $BO=11,CO=7,AC=CD=DB$ であった. このとき三角形$ABO$の面積の$2$乗を解答してください.
五角形 $ABCDE$ は $\angle{A}=90°$ で,四角形 $BCDE$ は $1$ 辺の長さが $8$ の正方形になっています.$AC$ と $BD$ の交点を $P$ とし,$AP=PQ$ となる点 $Q$ を辺 $DE$ 上に取りました.$\angle{ACQ}=45°$ であるとき,$PQ$ の長さの $2$ 乗を求めてください。
非負整数を半角で入力してください。
$3$ つの自然数を積が $1000000$ となるように選ぶ方法は何通りありますか.
答えは正の整数値となるので, その整数値を半角で入力してください.
追記: 回答いただいた内容的に, $3$ つの自然数を区別するかどうかがわかりにくかったと思われるので追記します. この問題では $3$ つの自然数は区別しません. すなわち, $(1,10,100000)$ と $(10,1,100000)$ のように 並び替えただけの組は同一のものとみなします.
( https://mathlog.info/articles/Lf8QaKPklfv156yuq309 問題13) 三角形$ABC$において外接円,内接円,角$A$内の傍接円の半径をそれぞれ$R,r,r_A$とすると
$$R=14,r=6,r_A=19$$
が成り立ちました.このとき$BC$の長さの二乗を求めてください.
答えを入力してください.
5進数で表された[2024]を2進数で表せ。
数字のみでOK
$\triangle{ABC}$ の辺 $AC$ に接する傍接円の中心を $I_B$,辺 $AB$ に接する傍接円の中心を $I_C$ とし,$I_BI_C$ の中点を $M$ とする. $I_BI_C=14,BC=10$ のとき,$\triangle{MBC}$ の面積を $2$ 乗した値を解答してください.
半角数字で解答してください