次の関数の極大値を求めよ。 y=|x^2-7x+10|+x
半角数字でお願いします。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
実数a,b,c,d,e,fが次の不等式を満たしている。 $$ a^2+b^2+c^2≦1 $$$$ b^2+c^2+d^2≦1 $$$$ c^2+d^2+e^2≦1 $$$$ d^2+e^2+f^2≦1 $$このとき$$a+b+c+d+e+f$$の最大値を求めよ。
a+b+c+d+e+fが最大となる時の(a+b+c+d+e+f)^2の値を入力してください。
$$p、p^2、p^3、p^4$$が10進数表記ですべていい数字となる自然数pは存在するか。 ただし、いい数字とはどの桁も素数であるような自然数のことである。例えば、252、7352のような自然数のことである。
存在するならばそのような自然数pを入力してください。存在しないならば、存在しないことを証明してください。(簡単にでいいです。)
$$ a_1=b_1=2025, \begin{cases} a_{n+1}=a_n-2n+b_{2028}\\ b_{n+1}=b_n+4n+a_{2028}\end{cases} $$
について、$a_n$の一般項を $$a_n=α−(n−1)(n−β)$$と表したとき、$β$の値を求めよ
複素数の数列$\lbrace z_{n}\rbrace (n=0, 1, 2, ...)$は $$ z_{n+1}=\left\lvert\frac{z_{n}+\bar{z_{n}}}{2}\right\rvert z_{n} (n=0,1,2,...) $$ を満たしている。このとき,$\displaystyle \lim_{n\to \infty}z_{n}$が収束するような$z_{0}$の存在範囲を複素数平面上に図示せよ。
この存在範囲を数式で表現してください。最も簡単な1つの等式あるいは不等式を用いてください。
正角形 $ABCDEF$ について,辺 $AB,BC,DE, EF$ 上にそれぞれ点 $P,Q,R,S$ があり, $$AP =1,\ \ BQ =2,\ \ DR =3,\ \ ES =4$$ が成り立ちます.四角形 $PQRS$ の面積が $64\sqrt3$ のとき,正六角形の一辺の長さは正の整数 $a,b$ を用いて $a + \sqrt b$ と表せるので $a+b$ の値を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
勇者は座標平面上の原点 $(0,0)$ にいます. 勇者は点 $(6,6)$ まで $x$ 座標か $y$ 座標の少なくとも一方が整数である点のみを通って最短距離となるように移動します.
しかしながら,魔王の罠が直線 $\displaystyle{y=x+\frac{5}{2}}$ 上に張られていて,勇者は罠の張られている直線上を通るたびに $1$ ダメージずつ受けてしまいます.
勇者が最短距離で移動する道のりは ${}_{12}\mathrm{C}_6$ 通り考えられますが,それらすべてについて受けるダメージの平均値を求めてください.ただし,その平均値は互いに素な正整数 $a,b$ を用いて $\displaystyle{\frac{a}{b}}$ と書けるので $a+b$ の値を解答してください.
11の100乗(11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕ 11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕ 11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕ 11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕ 11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11)の下6桁 を、パスカルの三角形を利用して求めなさい。ただし、1234567890の下6桁は567890です。
実数 $x,y$ が $\bigg\{\begin{aligned} 20x+12y=20 \\ 23x+31y=24 \end{aligned}$ の $2$ 式を満たすとき,$2023x+1231y$ の値を求めて下さい.
半角数字で解答してください.
$AB=AC$なる鋭角二等辺三角形$ABC$において$AB$,$BC$の中点をそれぞれ$M$,$N$とし、$MC$の垂直二等分線と$AN$の交点を$P$とします。$\triangle ABC$の面積は$15$であり、$AP:PN=4:1$であるとき、$BC^4$を解答してください。
半角数字で解答してください。
以下の関数$f(x)$の最小値の$2$乗を求めてください。($x$は実数)
$$ \begin{align} f(x)= \ &\bigg\{48\lim_{N\rightarrow\infty}\Bigg(\sum_{k=0}^{N}\frac{\sqrt{N^2+k^2}}{N^2}\Bigg)-12\log\big(3+2\sqrt{2}\big)\bigg\}x^4\\ &+\sqrt{2} \ d\Bigg(\sum_{n=10}^{20}{}_n\mathrm{C}_{10}\Bigg)x^3-\bigg\{\max_{\theta\in\mathbb{R}}\bigg|\begin{pmatrix}96\\96\sqrt{7}\end{pmatrix}\cdot\begin{pmatrix}\cos\theta\\\sin\theta\end{pmatrix}\bigg|\bigg\}x^2\\ &-768\sqrt{2}\Bigg(\mathrm{Re}\sum_{m=0}^{\infty}\Big\{2^{-\frac{m}{2}}\Big(\cos\frac{m\pi}{12}+i\sin\frac{m\pi}{12}\Big)\Big\}-\frac{\sqrt{3}}{2}\Bigg)x+120\sqrt{2} \end{align} $$
ただし、$d(n)$は約数個数関数、縦書きの()はベクトル、$|A|$は絶対値、$\max_{\theta\in\mathbb{R}}f(\theta)$は$\theta$を実数範囲で動かしたときの$f(\theta)$の最大値、$\mathrm{Re}(z)$は$z$の実部を表します。
非負整数を半角英数字で入力してください。
三辺の長さがa!、b!、c!(a,b,cは自然数)となる直角三角形は存在するか。
存在するならば組(a,b,c)を1組入力してください。存在しないならば、存在しないことを証明してください。(簡単にでいいです)
次の極限を求めてください。 $$\lim_{n\rightarrow\infty}\sum_{k=0}^n\frac{{}_nC_k}{(k+1)(n+1)^k}$$
解答に分数や特殊な文字、累乗を使用したい場合はTeX記法に則ってください。$は必要ありません。