全 1 件
感想を投稿してみましょう!この感想は正解した人だけにしか見えません!
この問題を解いた人はこんな問題も解いています
次の関数の極大値を求めよ。 y=|x^2-7x+10|+x
半角数字でお願いします。
正三角形 $ ABC$ の辺 $AB,BC,CA$ 上にそれぞれ点 $P,Q,R$ があり, $$PQ=3,\ \ \ \ QR=5,\ \ \ \ RP=7,\ \ \ \ AB=9$$ を満たしています.このとき,線分 $AQ$ の長さは互いに素な整数 $a,b$ を用いて $\displaystyle \frac{a}{b}$ と書けるので $a+b$ の値を解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
$$ a_1=b_1=2025, \begin{cases} a_{n+1}=a_n-2n+b_{2028}\\ b_{n+1}=b_n+4n+a_{2028}\end{cases} $$
について、$a_n$の一般項を $$a_n=α−(n−1)(n−β)$$と表したとき、$β$の値を求めよ
実数a,b,c,d,e,fが次の不等式を満たしている。 $$ a^2+b^2+c^2≦1 $$$$ b^2+c^2+d^2≦1 $$$$ c^2+d^2+e^2≦1 $$$$ d^2+e^2+f^2≦1 $$このとき$$a+b+c+d+e+f$$の最大値を求めよ。
a+b+c+d+e+fが最大となる時の(a+b+c+d+e+f)^2の値を入力してください。
$AB=AC$なる鋭角二等辺三角形$ABC$において$AB$,$BC$の中点をそれぞれ$M$,$N$とし、$MC$の垂直二等分線と$AN$の交点を$P$とします。$\triangle ABC$の面積は$15$であり、$AP:PN=4:1$であるとき、$BC^4$を解答してください。
半角数字で解答してください。
正の実数$x,y,z$が$$(x+1)y^2=(x−1)z^2=\frac{3}{5}xyz$$ を満たすとき、 $$\frac{z}{y}=?$$
例)?に入る数値を入力してください。
三角形 $ABC$ があり,外心を $O$ とした時以下が成り立ちました. $$ AB+AC=2BC,\quad AB\times AC=24,\quad AO=5 $$ この時,三角形 $ABC$ の内接円の半径の値を求めてください.ただし求める値は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.
半角数字で入力してください.
四角形 $ABCD$ があり,以下を満たしています:
$$ \angle B + \angle C = 120^{\circ} , \angle D = \angle B + 30^{\circ} , AB = CD = 7 , BC = 13 . $$
このとき,辺 $AD$ の長さの $2$ 乗を解答してください.
半角数字で解答してください.
$AB=5, AC=7$の三角形$ABC$があり重心を$G$,内心を$I$とすると$BC //GI $であった. このとき三角形$ABC$の面積の$2$乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
実数 $x,y$ が $\bigg\{\begin{aligned} 20x+12y=20 \\ 23x+31y=24 \end{aligned}$ の $2$ 式を満たすとき,$2023x+1231y$ の値を求めて下さい.
$\:2024≧a>b>c≧1\:$なる正整数の組$\:(a,b,c)\:$であって、$x^a+x^b+x^c+1\:$が$\:(x+1)\:$を因数に持つようなものは何通りあるか解答してください。
$∠BAC=30°$、$BC =3$である$△ABC $について、$AB$の最大値を解答してください。