正六角形:1→2→3→4

kusu394 自動ジャッジ 難易度: 数学 > 競技数学
2024年7月24日22:36 正解数: 2 / 解答数: 2 (正答率: 100%) ギブアップ数: 1

全 2 件

回答日時 問題 解答者 結果
2025年5月14日17:45 正六角形:1→2→3→4 Weskdohn
正解
2024年7月25日20:33 正六角形:1→2→3→4 adapchi
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

極大値

Ultimate 自動ジャッジ 難易度:
10月前

5

問題文

次の関数の極大値を求めよ。
y=|x^2-7x+10|+x

解答形式

半角数字でお願いします。

不等式

skimer 採点者ジャッジ 難易度:
2時間前

1

問題文

$a>0,b>0$ のとき、
$a^{4}+4a^{3}b+2a^{2}b^{2}+4ab^{3}+b^{4}\geq0$ を示せ

解答形式

記述形式でお願いします
入力がめんどくさい方は、紙に書いて、twitterのDMに送ってください

7月前

3

問題文

$f(x)=\frac{3-x}{ \sqrt{3(x+2)(-2x+1)}}$ $ (-2<x<0)$ とする
$f(x)$ が最小値を取るときの $x$ の値を求めよ

解答形式

解答は$-\frac{㋐}{㋑}$の形で表されるので、1行目に㋐を、2行目に㋑を半角数字で入力してください

いつものking property(に似た)問題

nps 自動ジャッジ 難易度:
2月前

1

問題文

∮(-π/6→π/3) ((sinx)^3)/(sinx+cosx)dxの値を求めよ。

解答形式

解答は π/a-(√ b+c)/d-(1/e)log(√f+g)の形になります。
a,b,c,d,e,f,gに当てはまる自然数を順に半角で答えてください。
また、1つの値の間は1つずつ空白を開けるようにしてください。
(例)a=2, b=3, c=11,d=5,e=6,f=7,g=8の場合、
2 3 11 5 6 7 8

孤独な頂点

kusu394 自動ジャッジ 難易度:
12月前

4

問題文

正八角形 $P_1P_2P_3P_4P_5P_6P_7P_8$があり, 各頂点に $0,1,2$ のいずれかの数字を $1$ つずつ書き込みます.
頂点 $P_i$ に書かれた数字のことを, $f(P_i)$ で表すこととします.

正八角形の頂点 $P_i$ が"孤独な頂点"であるとは, $f(P_i) \neq f(P_{i-1})$ かつ $f(P_i) \neq f(P_{i+1})$ を満たすことと定義します.
ただし, 便宜上 $f(P_0)=f(P_8),\ f(P_9)=f(P_1)$ であるとします.
また, 正八角形の"孤独な頂点"の個数を"孤独度"と呼ぶことにします.

正八角形の頂点に数字を書き込む方法は $3^8$ 通りありますが, それらすべてについて"孤独度"の総和を求めてください.

例:
$$(f(P_1), f(P_2), f(P_3), f(P_4),f(P_5), f(P_6), f(P_7), f(P_8)) = (0,1,2,1,2,1,2,0)$$ のときは $P_2,...,P_7$ が"孤独な頂点"となるので, この数字の書き込み方の"孤独度"は $6$ となります.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.


問題文

nを一桁の自然数とする。xについての多項式、

∫(0→x) (t^3 + {1/√(n-2)(n-3)(n-4)} t^-2 +1)^n dt

について、x^6の係数を自然数にするようなnを求めなさい。

解答形式

半角で一桁の数字を入力してください。

過去垢の問題(整数②)

katsuo_temple 自動ジャッジ 難易度:
6月前

6

問題文

$0$時$0$分〜$23$時$59$分とする時刻$A$時$B$分について、$60A+B,100A+B$が共に平方数となるとき、$A×B$の総和を求めよ。

解答形式

半角数字で解答して下さい。

面積比

taku1729 自動ジャッジ 難易度:
8日前

5

問題文

△ABCについて、Aから直線BCに下ろした垂足をD、点Bから直線CAに下ろした垂足をE、△ABCの垂心をHとしたとき以下が成立しました。$$AH=3,AE=2,AC=5$$△AHB:△HCDは互いに素な自然数a,bを用いてa:bと表せるのでa+bの値を解答してください。

解答形式

半角数字を入力してください。

突き刺す直線

kusu394 自動ジャッジ 難易度:
11月前

3

問題文

座標平面において $A(0,4000),B(-3000,0),C(3000,0)$ をとります.次の条件をすべて満たすような直線 $\ell$ として考えられるものは何通りありますか.

  • $\ell$ と直線 $AB$ は点 $P$ で交わり, $P$ の $x$ 座標は $-3000$ より大きく $0$ より小さい.
  • $\ell$ と直線 $AC$ は点 $Q$ で交わり, $Q$ の $x$ 座標は $3000$ より大きい.
  • 線分 $BP$ の長さと線分 $CQ$ の長さは整数値である.
  • $\ell$ と $x$ 軸の交点を $R$ とするとき,$\triangle RPB$ と $\triangle RQC$ の面積は等しい.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

12月前

6

問題文

下の図において, $\triangle ABC$ と $\triangle BDE$ は二等辺三角形です. さらに,
$$\angle ABC=\angle BDE=90^\circ,\hspace{1pc} \angle EBC=60^\circ\\
BC=32, \hspace{1pc} DB=6\sqrt{2}$$ が成立します. 線分 $AE$ の中点を $M$ とするとき, 線分 $DM$ の長さを求めてください.
ただし, $E$ は $\triangle ABC$ の内側にあります.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

勇者の行く手を阻むもの

kusu394 自動ジャッジ 難易度:
11月前

2

問題文

勇者は座標平面上の原点 $(0,0)$ にいます. 勇者は点 $(6,6)$ まで $x$ 座標か $y$ 座標の少なくとも一方が整数である点のみを通って最短距離となるように移動します.

しかしながら,魔王の罠が直線 $\displaystyle{y=x+\frac{5}{2}}$ 上に張られていて,勇者は罠の張られている直線上を通るたびに $1$ ダメージずつ受けてしまいます.

勇者が最短距離で移動する道のりは ${}_{12}\mathrm{C}_6$ 通り考えられますが,それらすべてについて受けるダメージの平均値を求めてください.ただし,その平均値は互いに素な正整数 $a,b$ を用いて $\displaystyle{\frac{a}{b}}$ と書けるので $a+b$ の値を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

極限

sulippa 自動ジャッジ 難易度:
8日前

4

問題文

n を正の整数とし、$p$ を素数とする。$n!$ の素因数分解における $p$ の指数を $E_p(n!) = \sum_{k=1}^{\infty} \lfloor \frac{n}{p^k} \rfloor$ とする。

量 $Q_n$ を次のように定義する。
$$ Q_n = \sum_{p \le n} \left( \frac{n}{p-1} - E_p(n!) \right) \log p $$
ただし、和は $n$ 以下の全ての素数 $p$ を走り、$\log$ は自然対数とする。

次の極限値を求めよ。
$$ \lim_{n \to \infty} \frac{Q_n}{n} $$

ただし、オイラー・マスケロー二定数を $γ$ とする。

解答形式

半角で