正整数 $x, y, z$ が以下の等式を同時にみたすとき,積 $xyz$ の値としてあり得るものの総和を求めてください.
$$x + y + z = 48,x^2 + y^2 + z^2 = 1110$$
半角英数にし,答えとなる正整数値を入力し解答して下さい.
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$\:2024≧a>b>c≧1\:$なる正整数の組$\:(a,b,c)\:$であって、$x^a+x^b+x^c+1\:$が$\:(x+1)\:$を因数に持つようなものは何通りあるか解答してください。
半角数字で解答してください。
$1$ 以上 $12$ 以下の整数からなる集合を $U$ とし,空でない $U$ の部分集合 $S, T$ を $$S \cup T = U,S \cap T = \phi$$となるよう定めたところ,$S$ の元の和と $T$ の元の平方和が等しくなりました.このような集合の組 $(S, T)$ すべてに対する「$S$ の元の和」の総和を解答して下さい.
たとえば, $$S = \{1, 2, ..., 9\},T = \{10, 11, 12\}$$であるなら,$S$ の元の和は $1 + 2 + \cdots + 9 = 45$ と計算され,$T$ の元の平方和は $10^2 + 11^2 + 12^2 = 365$ と計算されます.
半角英数にし、答えとなる正整数値を入力し解答して下さい.
時刻a時b分について、100a+b.60a+bがどちらも平方数になるような時刻について、 abの総和を求めよ。 但し0時00分から23時59分までとする。
半角で解答して下さい。
正整数 $x, y$ が $$x^{11}y^{10} = 2^{(2^{1110})} \cdot 3^{(3^{1110})} \cdot 5^{(5^{1110})} \cdot 37^{(37^{1110})} \cdot 1110$$ をみたすとき,$x$ のとり得る最小の値を求めて下さい.
OMCB020-E(URL : https://onlinemathcontest.com/contests/omcb020/tasks/9732) のアレンジ,というよりかはこのコンテストのTester期間中に運営さんに改題を提案したときの問題です. 4bにそぐわないとしてOMCへの使用には至りませんでしたが,せっかくなのでよければ解いてみてください.
$12$桁の整数$111111111111$の素因数の総和を求めてください. 但し,素因数の1つとして4桁の素数が含まれます.
整数で答えてください.
四角形 $ABCD$ について,線分 $BD$ 上に点 $E$ を取ると,$AE=BD$ で,角 $EAD=$ 角 $AED=$ 角 $EBC=$ 角 $BCE=40°$ が成り立ちました.このとき角 $BDC$ は何度ですか?
半角数字で解答してください.
自然数 $x$ に対して, $d(x)$ で $x$ の正の約数の個数を表します. $$d(4n-1)+d(4n)=8$$ を満たす自然数 $n$ について, 小さいほうから $7$ 個の総和を求めてください.
答えは正の整数値となるので, その整数値を半角で入力してください.
追記 =8 のところ =6 と書いてしまっていたため訂正しました 大変申し訳ありません
$3$ つの自然数を積が $1000000$ となるように選ぶ方法は何通りありますか.
追記: 回答いただいた内容的に, $3$ つの自然数を区別するかどうかがわかりにくかったと思われるので追記します. この問題では $3$ つの自然数は区別しません. すなわち, $(1,10,100000)$ と $(10,1,100000)$ のように 並び替えただけの組は同一のものとみなします.
素数 $p,q$ が $$4^p+2^p+1=p^2q$$を満たします. このようなすべての組 $(p,q)$ に対して, $p+q$ の総和を解答してください.
$\triangle{ABC}$ の辺 $AC$ に接する傍接円の中心を $I_B$,辺 $AB$ に接する傍接円の中心を $I_C$ とし,$I_BI_C$ の中点を $M$ とする. $I_BI_C=14,BC=10$ のとき,$\triangle{MBC}$ の面積を $2$ 乗した値を解答してください.
半角数字で解答してください
円 $O_1$,円 $O_2$ が点 $P$ で外接しており,円 $O_1$ 上の点 $Q$ における円 $O_1$ の接線を引いたところ円 $O_2$ と異なる $2$ 点で交わったので,その $2$ 交点を $Q$ に近い方から順に $A,B$ とします. $AP=4,AB=6,BP=9$ となったとき,${PQ}^2$ の値は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.
$17$で割り切れ、各桁の数の和も$17$で割り切れるような正整数を$\textbf{良い数}$と呼びます。$\textbf{相異なる}$良い数同士の差の絶対値としてあり得る最小値を求めなさい。
不備が見つかったため、答えを変更しました。本当に申し訳ございません。