OPMO2024

Furina 自動ジャッジ 難易度: 数学 > 競技数学
2024年12月1日19:53 正解数: 1 / 解答数: 26 (正答率: 3.8%) ギブアップ不可

全 26 件

回答日時 問題 解答者 結果
2024年12月1日20:04 OPMO2024 YoneSauce
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

何か

Lamenta 自動ジャッジ 難易度:
5月前

4

問題文

縦$2$マス、横$7$マスの$14$マスそれぞれに$1$〜$7$の整数のいずれかが$1$つ書かれています。以下の条件を満たす数字の書き方は何通りあるか答えてください。ただし、$N_{a,b}$で上から$a$マス目、左から$b$マス目のマスに書かれた数を表します。

・$1≦i≦7$の任意の整数$i$において、
 $N_{1,i}≡N_{2,i} (mod\:3)$ かつ
 $N_{1,i}≢N_{2,i} (mod\:2)$
・$1≦j≦2$、$1≦k≦6$の任意の整数$j,k$において、
 $N_{j,k}≢N_{j,k+1} (mod\:3)$ かつ
 $N_{j,k}≢N_{j,k+1} (mod\:2)$

解答形式

半角数字で入力してください。

初投稿

Lamenta 自動ジャッジ 難易度:
5月前

11

問題文

$1$つの整数が書かれた$15$枚のタイルが横$1$列に敷き詰められています。以下の条件を満たす数字の書き方は何通りあるか答えてください。

・タイルには$36$の正の約数のうちいずれかが書かれている。
・任意の隣り合う$2$枚のタイルに書かれた数の積は平方数でない。
・任意の隣り合う$3$枚のタイルに書かれた数の積は平方数である。

解答形式

半角数字で答えてください。

ゴールデンタイム

katsuo.tenple 自動ジャッジ 難易度:
3月前

8

問題文

時刻a時b分について、100a+b.60a+bがどちらも平方数になるような時刻について、
abの総和を求めよ。
但し0時00分から23時59分までとする。

解答形式

半角で解答して下さい。

読み間違いによる問題

katsuo.tenple 自動ジャッジ 難易度:
3月前

15

問題文

AB=36, AC=24の△ABCがあり線分ABを2:1に内分する点D, 線分ACを3:1に内分する点EをとりBEとCDの交点をPとするとAP=14であった.
このときBCの長さの2乗を求めよ。

解答形式

例)半角で解答して下さい。

自作問題2(極限)

contrail 自動ジャッジ 難易度:
53日前

10

問題文

方程式 $e^{nx}+x-2=0$ の正の解を$\alpha_n$とおきます.極限$\displaystyle \lim_{n\to \infty} (1+\alpha_n)^n$を求めて下さい.

解答形式

例)半角数字で解答して下さい.

線分の積

bzuL 自動ジャッジ 難易度:
11月前

21

問題文

直径 $10$ の円周上に $120$ 個の異なる点 $A_1,\ldots, A_{120}$があります.$120$ 個の点のうち $2$ 点を選ぶ方法は ${}_{120}\mathrm{C}_{2}$ 通りあります.この ${}_{120}\mathrm{C}_{2}$ 通りすべての二点の距離の総積の最大値を $M$ としたときに,$M$ は整数値になるので,$M$ の正の約数の個数を答えてください.

解答形式

半角数字で解答してください.

簡単な幾何

Lamenta 自動ジャッジ 難易度:
4月前

14

問題文

$∠BAC=30°$、$BC =3$である$△ABC $について、$AB$の最大値を解答してください。

解答形式

半角数字で解答してください。

素数

katsuo.tenple 自動ジャッジ 難易度:
3月前

32

問題文

4a²+b²+c²=d²を満たす素数の組について、
abcdの総和を求めよ。

解答形式

半角で答えて下さい。

自作問題1(組合せ)

contrail 自動ジャッジ 難易度:
8月前

19

問題文

三角柱 $ABC-DEF$ があり,いま点 $P$ は頂点 $A$ にいます.点 $P$ が隣り合う頂点に移動する操作を $12$ 回繰り返して点 $A$ に戻るように移動する方法すべてに対して,上下に移動する回数の総和を求めてください.

ただし上下に移動するとは,頂点 $A,B,C$ のいずれから頂点 $D,E,F$ のいずれかに移動すること,またその逆を意味します.

解答形式

半角数字で解答してください.

今日の因数分解 第60回

Lamenta 自動ジャッジ 難易度:
4月前

19

問題文

$\:2024≧a>b>c≧1\:$なる正整数の組$\:(a,b,c)\:$であって、$x^a+x^b+x^c+1\:$が$\:(x+1)\:$を因数に持つようなものは何通りあるか解答してください。

解答形式

半角数字で解答してください。


問題文

正整数 $x, y, z$ が以下の等式を同時にみたすとき,積 $xyz$ の値としてあり得るものの総和を求めてください.

$$x + y + z = 48,x^2 + y^2 + z^2 = 1110$$

解答形式

半角英数にし,答えとなる正整数値を入力し解答して下さい.

柏陽祭F

re.ghuS 自動ジャッジ 難易度:
2月前

22

10進数における$10!$を$n$進数に変換したときの末尾につく0の数を $f(n)$ とする.このとき,$\sum\limits_{n=2}^\infty f(n)$を求めよ.