自作場合の数・確率1-1

oolong_tea 自動ジャッジ 難易度: 数学 > 高校数学
2024年12月6日21:56 正解数: 5 / 解答数: 12 (正答率: 41.7%) ギブアップ数: 2
確率 方程式

全 12 件

回答日時 問題 解答者 結果
2025年2月3日13:32 自作場合の数・確率1-1 mits58
不正解
2025年2月3日13:32 自作場合の数・確率1-1 mits58
不正解
2025年1月15日14:16 自作場合の数・確率1-1 mits58
不正解
2025年1月3日3:33 自作場合の数・確率1-1 nanana
正解
2025年1月3日3:30 自作場合の数・確率1-1 nanana
不正解
2025年1月3日3:28 自作場合の数・確率1-1 nanana
不正解
2025年1月3日2:18 自作場合の数・確率1-1 nanana
不正解
2024年12月29日21:54 自作場合の数・確率1-1 Nyarutann
正解
2024年12月9日11:27 自作場合の数・確率1-1 tima_C
正解
2024年12月8日11:37 自作場合の数・確率1-1 Weskdohn
正解
2024年12月8日11:23 自作場合の数・確率1-1 ゲスト
正解
2024年12月8日11:22 自作場合の数・確率1-1 ゲスト
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

自作場合の数・確率1-2

oolong_tea 自動ジャッジ 難易度:
4月前

4

問題文

以下の2次方程式
$$
x^{2}-2ax+b=0 ― (*)
$$
について,自然数$n$を用いて以下の手順で係数$a,b$を定める。
$a:-n$以上$n$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
$b:-n$以上$n^{2}$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
カードを引く確率は同様に確からしいとし,できた2次方程式が実数解をもつ確率を$P(n)$とする。

$(2)$ $P(n)$を$n$の式で表せ。

(3)(4)は,自作場合の数・確率1-3につづく

2025/01/07追記
解説をアップデート,全員に対して公開に設定

解答形式

$$
P(n)= \frac{A(Bn+C)(Dn+E)}{F(Gn^{2}+Hn+I)}
$$

$A$~$I$に当てはまる整数を半角数字,空白区切りで回答

文字式の分数解答で自動ジャッジするのが大変だったので穴埋め式です。
わざとわかりづらくしてるので、1が入るところとかあります。

この問題は(2)です。が(1)を解かなくてもできます。解くと作者が喜びます。


問題文

nを一桁の自然数とする。xについての多項式、

∫(0→x) (t^3 + {1/√(n-2)(n-3)(n-4)} t^-2 +1)^n dt

について、x^6の係数を自然数にするようなnを求めなさい。

解答形式

半角で一桁の数字を入力してください。


数直線上の点 $\mathrm P$ は初め原点にある.サイコロを振り $1, 2$ が出たら正の向きに $2$ 進み,$3, 4, 5, 6$ が出たら負の向きに
$1$ 進むという操作を繰り返す.
$6$ 回の操作をおこなったとき,点 $\mathrm P$ が常に $x\geqq0$ の範囲にある確率を求めよ.
答えは互いに素な自然数 $a,b$ を用いて $\displaystyle\frac ab$ と表されるので,$1$ 行目に $a$ を,$2$ 行目に $b$ を答えよ.

自作場合の数・確率1-3

oolong_tea 自動ジャッジ 難易度:
4月前

2

問題文

以下の2次方程式
$$
x^{2}-2ax+b=0 ― (*)
$$
について,自然数$n$を用いて以下の手順で係数$a,b$を定める。
$a:-n$以上$n$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
$b:-n$以上$n^{2}$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
カードを引く確率は同様に確からしいとし,できた2次方程式が実数解をもつ確率を$P(n)$とする。

$(3)$ $\lim_{n\to \infty}P(n)$を求めよ。

(4)は,自作場合の数・確率1-4につづく

2025/01/07追記
解説をアップデート,全員に対して公開に設定

解答形式

分母分子の順に半角数字2つを空白区切りで回答
例)$\frac{1}{2}$と答えたいときは 2 1 と回答

この問題は(3)です。自作場合の数・確率1-2を解いてから解くことをお勧めします。

yes 自動ジャッジ 難易度:
38日前

11

問題文

$$
a_1 = 1,\quad a_2 = 2,\quad a_n = 5a_{n-1} - 6a_{n-2} \quad (n \geq 3)
$$

解答形式

$a_{10}$を求めなさい。

Reverse digits (学コン2024-12-3)

Lim_Rim_ 自動ジャッジ 難易度:
24日前

4

問題文

10の倍数でない正の整数 $n$ に対し, $f(n)$は, 十進法表示で $n$ を $1$ の位から逆の順番で読んで得られる正の整数として定めます. たとえば$f(123456789) = 987654321$です. $n+f(n)$が81の倍数となるような十進法で10桁の$n$の個数を解答してください.

備考

本問は大学への数学2024年12月学コン3番に掲載されている自作問題です.

工夫すると簡単になる問題

ac 自動ジャッジ 難易度:
2月前

3

問題

式1の時、式2の解を求めよ。
ただし、数の小さい順に答え、
答えが2つ以上ある場合、「,」を用いること。
例 2分の1と1の時は、1/2,1

式1

$$
12a^{2}-a=1
$$

式2

$$
16a^{2}-8a-9a^{2}-6a
$$

abc (大数宿題2024-2)

Lim_Rim_ 自動ジャッジ 難易度:
26日前

4

問題文

$\sqrt[abc]{a! + b! + c!}$が整数となるような正の整数の組$(a,b,c)$をすべて求めよ.

解答形式

すべての組に対する $a+b+c$ の値の総和を解答してください。論証は解説を参照してください。

Triangle T

Lim_Rim_ 自動ジャッジ 難易度:
26日前

4

問題文

三角形 $T$ の一つの辺の長さは平方数で,残りの辺の長さは素数であるとする.また,$T$ の面積は整数で,外接円の直径は素数であるとする.$T$ の各辺の長さを求めよ.

解答形式

$T$の3辺の長さの総和としてありうる値の総和を解答してください。(論証は解説を参照してください。)

備考

2018年3月の大学への数学「読者と作るページ」に掲載された問題です。

ちょっと長い方程式

noname 自動ジャッジ 難易度:
12月前

5

問題文

$x,y$を整数とします。次の式を満たす$x,y$の組$(x,y)$を全て求めてください。$$x^2y^2+3x^2y-12xy^2-5x^2-36xy+25y^2+60x+78y=123$$

少し問題を変更いたしました。ご迷惑をおかけしてしまい申し訳ございません。

解答形式

$x$と$y$の積$xy$としてあり得るものの総和を半角で解答してください。

D. ループ

G414xy 自動ジャッジ 難易度:
6月前

75

問題文

4x4のマスのうち1個以上に、対角線を1本ずつ引いたとき、全ての対角線がループの一部分であるものは何通りですか?
但し、「ループの一部分である」とは、
全ての対角線の端が、ちょうど1つの別の対角線の端と同位置にあることを意味します。

解答形式

半角数字で入力してください。

連続する整数の積

noname 自動ジャッジ 難易度:
2月前

7

$n$を正の整数とします。連続する$10$個の整数の積$n(n+1)(n+2)(n+3)…(n+9)$が$2025^3$で割り切れるような$n$としてあり得る最小のものを求めてください。

解答形式

$n$の値を半角で入力してください。