アクセスがしづらい状況について (2025年1月23日14:22)
現在、ポロロッカにアクセスがしづらい状況が発生しております。 サーバー強化など応急処置は完了しておりますが、本格的な調査は2月ごろとなる見込みです。 ご迷惑をおかけし、大変申し訳ございません。

逆関数の積分

Yutanza 自動ジャッジ 難易度: 数学 > 高校数学
2024年12月10日14:33 正解数: 3 / 解答数: 5 (正答率: 60%) ギブアップ数: 0

問題文

$f(x) = e^{\frac{x}{2}}-1 $ として、$C_1: y = f(x)$, $C_2: x = f(y)$ とする。
$C_1$, $C_2$ との、原点以外の交点の座標を$(a,e^{\frac{a}{2}}-1)$ とする。
$C_1$, $C_2$ とで囲まれた部分の面積を$S$とするとき、
$S=a(a-ア)$となる。

解答形式

アに入る数字を、半角数字で入力してください。


ヒント1

$C_1$と$C_2$は、直線$y=x$で対照


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

57日前

2

(かつて別のサイトに乗せたことがある問題です。)

問題文(50点)

$xy$平面で楕円について考察したい。以下の設問に答えよ。ただし、$a>c\geq0$とする。

①:長半径が$a$、焦点が$(0,0)$と$(-2c,0)$である楕円の方程式を定義から導け。(15点)

ここで、以下の様に$r,\theta$を導入する。

$$r=\sqrt{x^2+y^2},\ \cos\theta = \frac{x}{r},\ \sin\theta = \frac{y}{r}$$

また、$q$を以下の様に定義する。
$$q = \frac{c}{a}$$

このとき、①の楕円において次が成り立つ。

$$r=\frac{a(1-q^2)}{1+q \cos\theta} \tag{i}$$

②: $\ (\mathrm{i})\ $を示せ。(15点)

③: ①の楕円を原点周りに30°回転させた図形を$C$とする。また、$C$と$x$軸の交点をそれぞれ$A、B$とし、線分$AB$の長さを$L(q)$とする。$a$を定数として、$L(q)$の最大値及びそのときの$q$を求めよ。さらに、$L(q)$が最大になるとき、$C$はどのような図形か、その特徴を述べよ。(20点)

解答形式

入試本番や模試のような形で、記述形式で解答してください。
少し遅くなってしまうかも知れませんが、採点もさせていただきます。

注意

  • 解説は正解者のみに公開される設定になっています。ですが、ヒントの欄に書いてあることと全く同じなので、正解できなかった場合もヒントをみて納得してもらえるとよいと思います。

もし余裕があれば...

  • 問題の感想を教えてくれると嬉しいです。特に、難易度感や、教育的意義についてコメントしてくれると助かります。

  • 例えば、この設問が完答できる生徒のレベル感などを予想してもらえると助かります。

積分を用いた極限値問題

Ys_math_and_phys 採点者ジャッジ 難易度:
55日前

1

問題文

$$ I_n=\int_{1}^{n}\log x dx $$
とする。ただし$n$は非負の整数。以下の設問に答えよ。ただし、必要ならば以下の式を用いてよい。
$$ e^x=\sum_{k=0}^{\infty}\frac{x^k}{k!}$$

  1. $I_n \leq \log n! \leq I_{n+1}$を示せ。(20点)
  2. $\lim_{n\rightarrow \infty}\frac{n!}{(n+1)^n}$を求めよ。(30点)

解答形式

入試本番や模試のような形で、記述形式で解答してください。
少し遅くなってしまうかも知れませんが、採点もさせていただきます。

注意

解説は正解者のみに公開される設定になっています。ですが、ヒントの欄に書いてあることと全く同じなので、正解できなかった場合もヒントをみて納得してもらえるとよいと思います。

もし余裕があれば...

  • 問題の感想を教えてくれると嬉しいです。特に、難易度感や、教育的意義についてコメントしてくれると助かります。

  • 例えば、以下のような観点でコメントしてくれると嬉しいです。
    (もちろん、全てのテーマでコメントせずとも大丈夫ですし、他の観点からのコメントや批判も歓迎します)

    1. この設問が完答できる生徒のレベル感は?(ヒント有、無それぞれ)
    2. ヒントありとして、授業に用いるとしたらどうか?
    3. ヒント無しで大学入試で出題されるとしたらどうか?

cosの性質

skimer 採点者ジャッジ 難易度:
5月前

1

問題文

$$
\cos n\thetaは\cos\thetaのみで表せるか
$$

解答形式

表せないときは反例を
表せるときは記述で答えなさい

Qualifier 6

seven_sevens 採点者ジャッジ 難易度:
43日前

11

$$\int_{-\pi}^\pi\sin{x}dx$$

2025記念問題

kiwiazarashi 自動ジャッジ 難易度:
36日前

19

問題文

素因数分解したときの素因数の合計が22になるものを「キウイナンバー」とします。(例えば2025は素因数分解すると3×3×3×3×5×5になり、これを合計すると22になるので2025はキウイナンバーです。)
最大のキウイナンバーを求めてください。

解答形式

答えの数字をそのまま入力すればOKです。

Qualifier 1

seven_sevens 採点者ジャッジ 難易度:
43日前

21

$$\int dx$$

B

kusu394 自動ジャッジ 難易度:
2月前

32

問題文

$7216$ のように,

  • $11$ の倍数である.
  • 上 $1$ 桁を無視してできる数は立方数である.(すなわち,ある整数 $m$ を用いて $m^3$ と表せる)

の $2$ 条件を満たす $4$ 桁の正整数を 祭数 といいます.最大の祭数を解答してください.ただし,上 $2$ 桁目等が $0$ である場合の上 $1$ 桁を無視してできる数とは上 $1$ 桁の数とそれに続く $0$ を無視した数とします.例えば $1011$ の上 $1$ 桁を無視してできる数は $11$ です.

解答形式

半角整数で入力してください.

A

kusu394 自動ジャッジ 難易度:
2月前

54

問題文

『猫又おかゆ』の目の前に左右 $1$ 列に $9$ 個のおにぎりが並んでいます.おにぎりの種類は鮭,うめ,おかかの $3$ 種類のうちいずれかです.並んでいるおにぎりについて,『猫又おかゆ』は次のことに気づきました.

  • すべての種類のおにぎりがある.
  • ある種類のおにぎりは $1$ 個しかない.
  • おにぎりの種類が左右対称に並んでいる.

『猫又おかゆ』の目の前にあるおにぎりの種類の並びとして考えられるものは何通りありますか.

解答形式

半角整数で入力してください.

KOTAKE杯003(A)

MrKOTAKE 自動ジャッジ 難易度:
32日前

64

問題文

鋭角三角形$ABC$があり$∠A$内の傍心を$P$とすると$∠APB=23°$であったので,
$∠BAC$の大きさを度数法で表したときにあり得る最小の整数値を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

Sandwich+

baba 自動ジャッジ 難易度:
4年前

9

問題文

https://pororocca.com/problem/19/
こちらの問題の設定で,「裏裏裏裏裏表表表表表」というピザの塔ができるような調理は何通りあるか答えなさい.

解答形式

半角数字で入力してください.

hinu積分02

hinu 採点者ジャッジ 難易度:
4年前

1

問題

(1) 定積分

$$
\int_0^1 \frac{x\log x}{(x+1)^2}dx
$$

の値を求めよ。

(2) 関数列 ${f_n(x)}$ を

$$
f_{n+1}(x)=(x^x)^{f_n(x)},\quad f_1(x)=x^x
$$

で定める。定積分

$$
\int_0^1(x^x)^{{(x^x)}^{(x^x)\cdots}}dx:=\int_0^1\lim_{n\to \infty} f_n(x)\ dx
$$

の値を求めよ。ただしテトレーション $x^{{x^{x\cdots}}}$ は底 $x$ が $e^{-e}<x<e^{1/e}$ のとき収束することは証明せずに用いて良い。

備考

この問題の正解判定は出題者により手動で行われるため、判定までに時間がかかることがある。

hinu問題02

hinu 自動ジャッジ 難易度:
4年前

43

問題文

$a,b,c$ を実数とする。次の連立方程式を解け。

$$
a^2-4b-1=0\\
b^2-8c+28=0\\
c^2-6a+2=0\\
$$

解答形式

a,b,cを半角数字として(a,b,c)で解答してください。無理数などを使いたい場合はTeXコマンドを使用してください。