Geometry

wasab1 自動ジャッジ 難易度: 数学 > 競技数学
2025年3月7日23:08 正解数: 0 / 解答数: 2 ギブアップ不可

問題文

鋭角三角形 $ABC$ において,外心を $O$,垂心を $H$ とし,$A,B,C$ から対辺におろした垂線の足をそれぞれ $D,E,F$ とします.直線 $AO$ と三角形 $BHC$ の外接円が三角形 $ABC$ の内部の点 $P$ で交わっており,直線 $EF,DP$ の交点を $X$ とすると,
$$PX=8,PH=3,\angle BAD=\angle FXD$$
が成立しました.
 このとき,三角形 $ABC$ の面積の $2$ 乗を求めてください.

解答形式

例)半角数字で解答してください.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

[D] Xmas Function

GaLLium31 自動ジャッジ 難易度:
9日前

18

問題文

$S=\lbrace 0,1, \ldots , 30 \rbrace$ とします.関数 $f:S \rightarrow S$ であって,以下を満たすようなものの個数を $N$ とします.

  • 任意の $x,y \in S$ について,$x^{12}-y^{12}$ が $31$ の倍数ならば,$f(x)^{25}-f(y)^{25}$ も $31$ の倍数.

$N = a \cdot b^c$ であるような正整数 $a,b,c$ について,$a+b+c$ の最小値を解答してください.

[E] Delete Pairs

GaLLium31 自動ジャッジ 難易度:
9日前

22

問題文

$30$ の正の約数を並べ替えた数列 $A$ としてありうるもの全てに対する,以下の操作方法の個数の総和を解答してください.

  • 「連続する $2$ 数 $A_i,A_{i+1}$ であって $A_i \mid A_{i+1}$ を満たすものを $1$ つ選び,それらをともに $A$ から削除する」という操作を $4$ 回行い,$A$ を空にする.

[F] Phi Puzzle

GaLLium31 自動ジャッジ 難易度:
9日前

19

問題文

平方因子を持たない正整数 $n$ であって,$\dfrac{\phi(n)}{\gcd(n,\phi(n))} = 18$ を満たすものの総和を解答してください.

Americium243 自動ジャッジ 難易度:
20日前

40

問題文

以下の値を求めてください.
$$\sum_{k=0}^{2026} \frac{k^2}{k^2-2026k+1013×2026}$$

解答形式

整数で解答してください

18月前

21

問題文

$\mathrm{AB=AC}$ の直角二等辺三角形 $\mathrm {ABC}$ がある。点 $\mathrm D$ を、直線 $\mathrm{AD}$ と $\mathrm{BC}$ が平行となるように取ったところ、$\mathrm{BD}=10,\mathrm{CD}=7$ であった。このとき $$\mathrm{AB}^4 + \mathrm{AD}^4 =\fbox{アイウエ}$$ である。ただし $\mathrm{XY}$ で線分 $\mathrm{XY}$ の長さを表すものとする。

解答形式

ア〜エには、0から9までの数字が入る。
文字列「アイウエ」を半角で1行目に入力せよ。
2行目以降に改行して回答すると、不正解となるので注意せよ。

[A] PQ=1

GaLLium31 自動ジャッジ 難易度:
9日前

36

問題文

$60$ 以下の正整数 $n$ に対して,それを $2,3,4,5$ で割ったあまりをそれぞれ $a,b,c,d$ とします.$xy$ 平面上に $P(a,b)$ と $Q(c,d)$ をとったとき $PQ= 1$ となるような $n$ の個数を解答してください.

[B] Make Square

GaLLium31 自動ジャッジ 難易度:
9日前

34

問題文

$\dfrac{51-n}{n-1}$ が平方数となるような整数 $n$ の総和を解答してください.

(13:17追記  $0$ も平方数に含むとします)

bMC_D

bzuL 自動ジャッジ 難易度:
17月前

47

問題文

非負実数 $x,y,z$ が $x+y+z=1$ を満たすとします.
$$
x^{5001}y^{5002} + y^{5001}z^{5002} +z^{5001}x^{5002}
$$
の最大値は,互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表すことができます.$a+b$ を素数 $4999$ で割った余りを求めてください.

解答形式

半角数字で解答してください.

PDC005 (B)

poinsettia 自動ジャッジ 難易度:
7月前

32

$\angle B=90^{\circ}$ なる直角三角形 $ABC$ について,線分 $AC$ の中点を $M$ とし,内部に $PM\parallel BC$ なるように点 $P$ を取り,三角形 $BPM$ の外接円と三角形 $ABC$ の外接円が再び交わる点を $X$ とする.$AP=5, PM=8, MA=10$ が成り立っているとき,線分 $PX$ の長さは互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.

[A] 百の産声

masorata 自動ジャッジ 難易度:
18月前

27

問題文

次の和を $10$ 進小数で表し、小数第 $61$ 位から第 $70$ 位までを求めよ。
$$
\sum_{n=1}^{9}\frac{n(10^{2n+1}-1)}{9\cdot10^{n^2+2n}}
$$

解答形式

小数第 $61$ 位から第 $70$ 位まで ($10$ 桁の数) を、半角で1行目に入力せよ。
2行目以降に改行して回答すると、不正解となるので注意せよ。

TMCMC001(F)

Tiri7_Ma13a_ 自動ジャッジ 難易度:
18月前

51

問題文

$ $ $3×4$ で構成された $12$ マスのマス目があります.すべてのマスが,初期状態では白色になっています.これらのマスを,灰色あるいは黒色に塗ることを考えます.
$ $ マスを塗るためには持ち点を消費します.持ち点は初期状態では $12$ 点です.
$ $ マス目の色は,以下の通りに塗り替えることができます:

  • 持ち点を $1$ 消費して,任意の白色のマスを $1$ つ灰色にする.
  • 持ち点を $1$ 消費して,任意の灰色のマスを $1$ つ黒色にする.
  • 持ち点を $2$ 消費して,任意の黒色のマスを $1$ つ白色に戻す.

$ $ また,マス目を塗る上で以下を守る必要があります:

  • 全ての持ち点を過不足なく消費しなければならない.
  • 全ての持ち点を消費したとき,全てのマスが白色であってはならない.

$ $ このとき,全ての持ち点を消費した後のマス目の塗られ方は全部で何通りありますか?
$ $ ただし,反転・回転して一致するものは区別します.

解答形式

非負整数を半角で解答してください.

KOTAKE杯007(F)

MrKOTAKE 自動ジャッジ 難易度:
5月前

30

問題文

三角形 $ABC$ があり,線分 $BC$ 上に点 $P$ をとる.三角形 $ABP$$,$ 三角形 $ACP$ の内心をそれぞれ $I,J$ とすると,
$$IJ \parallel BC,\quad AB:AC=4:5,\quad BP=8,\quad CP=9$$
が成立したので三角形 $ABC$ の面積を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.