Geometry

Furina 自動ジャッジ 難易度: 数学 > 競技数学
2025年3月7日23:08 正解数: 0 / 解答数: 2 ギブアップ不可

全 2 件

回答日時 問題 解答者 結果
2025年3月8日12:00 Geometry ゲスト
不正解
2025年3月7日23:12 Geometry uiui+
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

9月前

20

問題文

$\mathrm{AB=AC}$ の直角二等辺三角形 $\mathrm {ABC}$ がある。点 $\mathrm D$ を、直線 $\mathrm{AD}$ と $\mathrm{BC}$ が平行となるように取ったところ、$\mathrm{BD}=10,\mathrm{CD}=7$ であった。このとき $$\mathrm{AB}^4 + \mathrm{AD}^4 =\fbox{アイウエ}$$ である。ただし $\mathrm{XY}$ で線分 $\mathrm{XY}$ の長さを表すものとする。

解答形式

ア〜エには、0から9までの数字が入る。
文字列「アイウエ」を半角で1行目に入力せよ。
2行目以降に改行して回答すると、不正解となるので注意せよ。

bMC_D

bzuL 自動ジャッジ 難易度:
9月前

46

問題文

非負実数 $x,y,z$ が $x+y+z=1$ を満たすとします.
$$
x^{5001}y^{5002} + y^{5001}z^{5002} +z^{5001}x^{5002}
$$
の最大値は,互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表すことができます.$a+b$ を素数 $4999$ で割った余りを求めてください.

解答形式

半角数字で解答してください.

[A] 百の産声

masorata 自動ジャッジ 難易度:
9月前

26

問題文

次の和を $10$ 進小数で表し、小数第 $61$ 位から第 $70$ 位までを求めよ。
$$
\sum_{n=1}^{9}\frac{n(10^{2n+1}-1)}{9\cdot10^{n^2+2n}}
$$

解答形式

小数第 $61$ 位から第 $70$ 位まで ($10$ 桁の数) を、半角で1行目に入力せよ。
2行目以降に改行して回答すると、不正解となるので注意せよ。

TMCMC001(F)

Tiri7_Ma13a_ 自動ジャッジ 難易度:
10月前

51

問題文

$ $ $3×4$ で構成された $12$ マスのマス目があります.すべてのマスが,初期状態では白色になっています.これらのマスを,灰色あるいは黒色に塗ることを考えます.
$ $ マスを塗るためには持ち点を消費します.持ち点は初期状態では $12$ 点です.
$ $ マス目の色は,以下の通りに塗り替えることができます:

  • 持ち点を $1$ 消費して,任意の白色のマスを $1$ つ灰色にする.
  • 持ち点を $1$ 消費して,任意の灰色のマスを $1$ つ黒色にする.
  • 持ち点を $2$ 消費して,任意の黒色のマスを $1$ つ白色に戻す.

$ $ また,マス目を塗る上で以下を守る必要があります:

  • 全ての持ち点を過不足なく消費しなければならない.
  • 全ての持ち点を消費したとき,全てのマスが白色であってはならない.

$ $ このとき,全ての持ち点を消費した後のマス目の塗られ方は全部で何通りありますか?
$ $ ただし,反転・回転して一致するものは区別します.

解答形式

非負整数を半角で解答してください.

bMC_A

bzuL 自動ジャッジ 難易度:
9月前

58

問題文

あるサバイバルゲームには $2024$ 人の人が参加しており,以下を $2022$ 回繰り返します.

  • 残っている人の中からランダムに(等しい確率で)二人を選ぶ.その後,二人が対戦し,どちらかがゲームから脱落する.参加者の実力は同じであるため,脱落する側は等しい確率で選ばれる.

このとき,最後に残った二人に一度も対戦をしていない人が含まれる確率を求めてください.ただし,求める確率は互いに素な二つの正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表すことができるため,$a+b$ を解答してください.

解答形式

半角数字で解答してください.

TMCMC001(E)

Tiri7_Ma13a_ 自動ジャッジ 難易度:
10月前

55

問題文

$ $ p,d,q,b,a,e,s の $7$ 文字を使い,$6$ 文字の文字列を作ることを考えます.(使わない文字が必ず $1$ 文字以上出てきます.)
$ $ 文字列において,$1,6$ 文字目,$2,5$ 文字目,$3,4$ 文字目が後述の対応する文字どうしになるようにする必要があります.
$ $ 対応する文字は以下のとおりです.

  • p と d
  • q と b
  • a と e
  • s と s

$ $ なお,d と p のように,対応する文字どうしであり指定された文字目に $2$ 文字がいれば文字列内で順序が入れ替わってもよいものとします.
$ $ また,この文字列内において,同じ文字を使えるのは $2$ 回までとします.
$ $ 以上の条件を全て満たした文字列は全部でいくつありますか?

解答形式

非負整数を半角で解答してください.

bMC_B

bzuL 自動ジャッジ 難易度:
9月前

41

問題文

$728^{(729^{730})} + 730^{(729^{728})}$ は $3$ で最大何回割れますか.

解答形式

半角数字で解答してください.

TMCMC001(D)

Tiri7_Ma13a_ 自動ジャッジ 難易度:
10月前

63

問題文

$ $ ある教室には,縦 $6$ 列,横 $3$ 列で横長の机が並んでおり,$1$ つの机ごとに横並びに $2$ つずつ座席があるため,$36$ 個の座席と $18$ 個の机があります.$A$ くん,$B$ くん,$C$ くんの $3$ 人が,それぞれ $36$ 個の座席から $1$ つずつ異なる座席を選び座ります.
$ $ ここで,以下の条件を満たしました.

  • $B$ くんは,$A$ くんの座っている座席のある机から縦の列で見たときに $3$ 列以上後ろの机にある座席のみに座る.例えば,$A$ くんが縦 $1$ 列目の机にある座席に座っている場合,$B$ くんは縦 $4,5,6$ 列目の机にある座席に座っていることになる.
  • 机の縦の列,横の列どちらで見たときも,$3$ 人は全員相異なる列の机にある座席に座っている.

$ $ このとき,$3$ 人の座席の座り方は全部でいくつありますか?

解答形式

非負整数を半角で解答してください.

TMCMC001(C)

Tiri7_Ma13a_ 自動ジャッジ 難易度:
10月前

64

問題文

$ $ $5$ 種類の大きさ $1,2,3,4,5$ の服がそれぞれ $3$ 枚ずつあり,合計 $15$ 枚にはすべてに相異なる色が着色されています.$A$ さん,$B$ さん,$C$ さんの $3$ 人は,これら $15$ 枚の服からそれぞれ $1$ 枚ずつ異なる服を選んで着ます.ここで,$3$ 人が着ることのできる服の大きさは以下の通りです.

  • $A$ さんは,大きさ $1,2,3,4,5$ 全てを着ることができる.
  • $B$ さんは,大きさ $1,2,3$ を着ることができる.
  • $C$ さんは,大きさ $3,4,5$ を着ることができる.

$ $ このとき,$3$ 人の服の選び方はいくつありますか?
$ $ ただし,$3$ 人全体で見て同じ服を選んでいても着ている人が異なる場合違う選び方として区別します.

追記:6/26
解説の誤字を修正しました。ご指摘ありがとうございます。

解答形式

非負整数を半角で解答してください.

B

Furina 自動ジャッジ 難易度:
10月前

77

問題文

一辺の長さが $4$ の正三角形 $ABC$ について,$BC$ の中点を $M$ とし,線分 $BC$ 上に $BD=1$ なる点 $D$ をとります.$3$ 点 $ABD$ を通る円と$3$ 点 $ACM$ を通る円との交点を $X$ とするとき,$AX$ の長さの $2$ 乗を求めてください.ただし,求める値は,互いに素な正整数 $a,b$ を用いて $\dfrac{b}{a}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

TMCMC001(B)

Tiri7_Ma13a_ 自動ジャッジ 難易度:
10月前

77

問題文

$ $ 正方形の中を等間隔に区切ってできた $6×6$ のマス目があります.正方形の中心を中心として点対称となるようにマス目を塗ることを考えます.
$ $ 正方形全体で $10$ マスちょうどを塗るとき,マス目の塗られ方は何通りありますか?ただし,反転・回転して一致するものは全て区別します.

解答形式

非負整数を半角で解答してください.


問題文

$n$ を正の整数とする。$f(n)=\sqrt{n^4+2n+61\ }$ が整数となるような $n$ を $1$ つ選び、そのときの $f(n)$ の値を答えよ。

なお、$f(n)$ が整数とならない場合や、答えた $f(n)$ の値が正しくない場合は不正解とする。

正解した場合は、まず解説を見よ。また、他のユーザーの回答も見てみよ。

解答形式

あなたが選んだ $n$ における $f(n)$ の値を半角数字で1行目に入力せよ。