たぶん簡単な幾何問題

kiwiazarashi 自動ジャッジ 難易度: 数学 > 競技数学
2025年3月23日20:49 正解数: 2 / 解答数: 4 (正答率: 50%) ギブアップ数: 0
高校数学 幾何

全 4 件

回答日時 問題 解答者 結果
2025年3月28日13:41 たぶん簡単な幾何問題 ゲスト
不正解
2025年3月24日16:32 たぶん簡単な幾何問題 Kta
正解
2025年3月24日16:16 たぶん簡単な幾何問題 Kta
不正解
2025年3月23日20:59 たぶん簡単な幾何問題 34tar0
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

KOTAKE杯001没問①

MrKOTAKE 自動ジャッジ 難易度:
7月前

3

問題文

三角形$ABC$の内心を$I$とし直線$AI$と三角形$ABC$の外接円の交点のうち$A$でないものを$M$, 直線$AM$と$BC$の交点を$D$,$A$から $BC$への垂線の足を$H$とすると$AD=4, BH=DM=2 $であった. このとき$CD$の長さは正の整数$a,b$を用いて$\sqrt{a} -b$と表せるので,$ a+b$を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯001没問②

MrKOTAKE 自動ジャッジ 難易度:
7月前

4

問題文

三角形$ABC$の内心を$I$,直線$AI$と$BC$の交点を$D$とすると$AI=CI=CD=6 $であった. このとき$AC$の長さは正の整数$a,b $を用いて$ \sqrt{a} +b$と表せるので, $a+b$を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

問題

Kinmokusei 自動ジャッジ 難易度:
4年前

7

問題文

(2020.9.26 11:57追記)
解答形式に不備があったため、訂正致しました。

図の青、緑、赤の線分の長さを$X,Y,Z$、斜線部の面積を$S$とすると、次の式が成り立つ。
$$
\frac{[ア]}{S}=\frac{[イ]}{Z}\left(\frac{1}{X}+\frac{1}{Y}\right)
$$

なお、図の曲線は半円の弧である。

解答形式

$[ア],[イ]$にはともに自然数が入ります。その和を半角数字で解答してください。
ただし、その和が最小となるように解答してください。
例:$[ア]=4,[イ]=2$なら$6$ではなく(両辺を$2$で割ることにより)$3$と解答。

シンプルな幾何

MrKOTAKE 自動ジャッジ 難易度:
3月前

6

問題文

鋭角三角形$ABC$があり外心を$O$とする.直線$BO$と$AC$の交点を$D$とおくと$BC=BD,DO=5,AD=6$であったので$AB$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

簡単めな幾何問題

kiwiazarashi 自動ジャッジ 難易度:
7月前

5

問題文

緑色の正方形ABCDと、紫色の正方形EFGHがあり、それぞれ1辺6cmである。点Aと点E、点Bと点F、点Cと点G、点Dと点Hがそれぞれ重なるように正方形を重ねる。(緑色の正方形が上にある。) そして辺ABを3等分する点をとり、点Aに近い方を点Iとする。また辺EFを3等分する点をとり、点Fに近い方を点Jとする。
今、緑色の正方形のみを重心を中心として回転させ、点Iと点Jが重なったところで回転を止めた。このとき、上から見える紫色の部分の面積の合計はいくらか。

解答形式

答えは◯cm^2となるので、◯の部分のみを答えてください。

余談

2年前(小6)のときにルービックキューブを触りながら作った問題です。問題文が長ったらしくて読みにくいと思いますがご了承ください。ちなみにこの問題は当時scratchにも投稿しました。

文化祭算数問題 1

sta_kun 自動ジャッジ 難易度:
7月前

9

問題文

角 $C$ が直角となるような三角形 $ABC$ の辺 $BC$ 上に点 $D$ をとると,角 $DAC:$ 角 $BAD=1:2$,$AD$ の長さは $3 \mathrm{cm}$,$AB$ の長さは $5 \mathrm{cm}$ となりました.このとき,$BD:DC$ を求めてください.ただし,求める比は互いに素な正整数 $a,b$ を用いて $a:b$ と表せるので $a+b$ の値を解答して下さい.

解答形式

半角数字で解答してください.

求角問題13

Kinmokusei 自動ジャッジ 難易度:
3年前

8

問題文

正方形・正三角形・円を組み合わせた以下の図について、$x$で示した角の大きさを求めてください。

解答形式

半角数字で、0以上180未満の整数を解答してください。
「度」や「°」などの単位を付けないよう注意してください。

求角問題12

Kinmokusei 自動ジャッジ 難易度:
3年前

8

問題文

正方形と正三角形を組み合わせた図のような図形について, 青で示した角の大きさを求めてください.

解答形式

0以上180未満の整数を半角数字で解答してください。
ただし度数法で、単位を付けずに解答してください。

求角問題15

Kinmokusei 自動ジャッジ 難易度:
3年前

8

問題文

図の条件の下で、青で示した角の大きさを求めてください。

解答形式

解答を度数法で表し、0以上180未満の数値を半角数字で解答してください。
単位("度・°"など)はつけないでください。

求面積問題28

Kinmokusei 自動ジャッジ 難易度:
3年前

9

問題文

正方形に図のように線を引きました。外側の正方形の一辺が10のとき、青で示した部分の面積を求めてください。

解答形式

解答は自然数 $a,b$ によって $\dfrac{a}{b}$ と表せるので $a+b$ の値を半角数字で解答してください。

外心と内心

nmoon 自動ジャッジ 難易度:
13月前

7

問題文

$\angle{A} = 60^{\circ}$ なる三角形 $ABC$ の内心を $I$,外心を $O$ とする.直線 $IO$ と直線 $BC$ の交点を $D$ とし,直線 $AD$ と三角形 $ABC$ の外接円との交点を $E(\not = A)$ とすると,以下が成立した:

$$EI = 23 , IO = 18$$

このとき,線分 $AI$ の長さは,互いに素な正整数 $a,b$ を用いて$\displaystyle\frac{a}{b}$ と表されるので,$a + b$ を解答してください.

求面積問題25

Kinmokusei 自動ジャッジ 難易度:
3年前

11

問題文

三角形の2辺を6等分する点を図のように結びました。青い部分の面積が52のとき、赤い部分の面積を求めてください。

解答形式

半角数字で解答してください。