ハロウィンの体育

GaLLium 自動ジャッジ 難易度: 数学 > 競技数学
2025年3月29日10:18 正解数: 8 / 解答数: 17 (正答率: 47.1%) ギブアップ数: 3

全 17 件

回答日時 問題 解答者 結果
2025年4月28日16:06 ハロウィンの体育 ゲスト
不正解
2025年4月3日18:30 ハロウィンの体育 natsuneko
正解
2025年3月31日15:14 ハロウィンの体育 Weskdohn
正解
2025年3月31日15:07 ハロウィンの体育 Weskdohn
不正解
2025年3月31日14:57 ハロウィンの体育 Weskdohn
不正解
2025年3月30日18:36 ハロウィンの体育 Nyarutann
正解
2025年3月30日18:35 ハロウィンの体育 Nyarutann
不正解
2025年3月30日13:57 ハロウィンの体育 bbl_cookie
正解
2025年3月29日13:45 ハロウィンの体育 ゲスト
不正解
2025年3月29日13:13 ハロウィンの体育 R_Y_040507
正解
2025年3月29日12:59 ハロウィンの体育 ゲスト
正解
2025年3月29日12:04 ハロウィンの体育 ゲスト
正解
2025年3月29日11:57 ハロウィンの体育 ゲスト
不正解
2025年3月29日11:45 ハロウィンの体育 ゲスト
正解
2025年3月29日11:11 ハロウィンの体育 bbl_cookie
不正解
2025年3月29日11:08 ハロウィンの体育 bbl_cookie
不正解
2025年3月29日10:43 ハロウィンの体育 ゲスト
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

連続する整数の積

noname 自動ジャッジ 難易度:
2月前

8

$n$を正の整数とします。連続する$10$個の整数の積$n(n+1)(n+2)(n+3)…(n+9)$が$2025^3$で割り切れるような$n$としてあり得る最小のものを求めてください。

解答形式

$n$の値を半角で入力してください。

初投稿

Upasha 自動ジャッジ 難易度:
2月前

12

問題文

命題「aⁿ+bⁿ=cⁿ (n整数、a,b,cの最大公約数1)を満たす全ての自然数a,b,cは互いに素である」の真偽を述べよ

解答形式

真ならば真、偽ならば偽と入力

整数

kiriK 自動ジャッジ 難易度:
6月前

22

$自然数Xについて、Xの各位の数字を足し合わせた値をk(X)とおく。$
$4桁の自然数A,Bにおいて$$$
\begin{eqnarray}
\frac{k(A)}{k(B)}=\frac{A}{B}=n
\end{eqnarray}
$$$ (nは2以上の整数)$
$のとき、Aの取りうる値は何個あるか。$
半角数字のみで答えよ

C. 地雷

G414xy 自動ジャッジ 難易度:
7月前

13

問題文

4x4のマス目のうち、0個以上のマスを選んで1つずつ地雷を置き、すべてのマスに周囲8マス(自身を含まない)の地雷の数を書きます。
地雷を置くすべてのパターンにおいて書かれている数字の総和を求めてください。

解答形式

半角数字で入力してください。

OMC没問1

Kta 自動ジャッジ 難易度:
2月前

2

問題文

$AB<AC$ で,線分 $AB,AC$ の長さが正整数値である三角形 $ABC$ について,半直線 $CB$ 上で線分 $BC$ 上でないところに点 $D$ ,半直線 $BC$ 上で線分 $BC$ 上でないところに点 $E$ をそれぞれ置く.また,三角形 $ADE$ の外接円と直線 $AB,AC$ との交点のうち,$A$ でないほうをそれぞれ $P,Q$ とする.$4$ 点 $B,P,Q,C$ が同一円周上にあり,$DB=9,BC=45,CE=5$ のとき,線分 $PQ$ の長さとしてあり得る値の総和は互いに素な正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表せるので,$a+b$ を解答してください.

解答形式

半角数字で入力してください。

B. 8分割

G414xy 自動ジャッジ 難易度:
7月前

18

問題文

4x4のマス目を1x2のタイル8枚で敷き詰める方法は何通りありますか?

解答形式

半角数字で入力してください。

そらさんの新体力テスト

akatukisola 自動ジャッジ 難易度:
13月前

7

問題文

そらさんとあかつきさんは地点Aから東にある地点Bに向かって進みます。

そらさんは2秒間東に毎秒4m進み、1秒間西に毎秒2m進むを繰り返します。

あかつきさんは毎秒Xm東に進みます。

そらさんとあかつきさんは同時に地点Aを出発し、20秒後に同時に地点Bに到着しました。

Xはいくつですか?

解答形式

Xは互いに素な自然数A,Bを用いてA/Bと表せるので、A+Bを回答してください。

Reverse digits (学コン2024-12-3)

Lim_Rim_ 自動ジャッジ 難易度:
44日前

4

問題文

10の倍数でない正の整数 $n$ に対し, $f(n)$は, 十進法表示で $n$ を $1$ の位から逆の順番で読んで得られる正の整数として定めます. たとえば$f(123456789) = 987654321$です. $n+f(n)$が81の倍数となるような十進法で10桁の$n$の個数を解答してください.

備考

本問は大学への数学2024年12月学コン3番に掲載されている自作問題です.

OMC没問2

Kta 自動ジャッジ 難易度:
2月前

3

問題文

$\angle{A}=60^\circ,AB<AC$ なる三角形 $ABC$ について,その外心を $O$ ,垂心を $H$ とします.直線 $OH$ と直線 $AB$ との交点を $P$ としたとき,以下が成立しました.$$AP=8,AH=7$$このとき,三角形 $ABC$ の面積は互いに素な正整数 $a,c$ および平方因子を持たない正整数 $b$ を用いて $\displaystyle\frac{a\sqrt{b}}{c}$ と表せるので,$a+b+c$ を解答してください.

解答形式

半角数字で入力してください。


問題文

一辺の長さが1である正方形を $n$ 個、頂点が合うように辺同士でつなげてできる図形を $n$-オミノ とする。ただし、$n=1$ の場合は1つの正方形である。また、$n$-オミノが多角形をなすとき($n$-オミノで囲まれた領域が存在しないとき)、これを $n$-オミノ多角形 とする。

$\rm{S_n}$が$n$-オミノ多角形であるとき、$\rm{S_n}$の辺の数が2024となるような $n$ の最小値を求めよ。

解答形式

答えは整数となるので、半角で入力してください。

A. 14分割

G414xy 自動ジャッジ 難易度:
7月前

8

問題文

4x4のマス目を境界線で区切り、14分割する方法は何通りありますか?

解答形式

半角数字で入力してください。

整数の剰余

mahiro 自動ジャッジ 難易度:
41日前

14

問題文

以下によって定義される整数 $N$ を素数 $13907$ で割った余りを求めてください.$$N=\prod_{k=1}^{13906} (k^2+2025)$$

解答形式

13906以下の非負整数で解答してください