内接円, 外接円, 傍接円

tori9 自動ジャッジ 難易度: 数学 > 競技数学
2025年4月7日21:00 正解数: 10 / 解答数: 15 (正答率: 66.7%) ギブアップ不可
この問題はコンテスト「2025新歓コンテスト」の問題です。

全 15 件

回答日時 問題 解答者 結果
2025年10月29日12:25 内接円, 外接円, 傍接円 poinsettia
正解
2025年7月20日23:43 内接円, 外接円, 傍接円 uran
正解
2025年4月8日23:15 内接円, 外接円, 傍接円 AS
正解
2025年4月8日14:44 内接円, 外接円, 傍接円 omatsu24
不正解
2025年4月8日14:43 内接円, 外接円, 傍接円 omatsu24
不正解
2025年4月8日9:47 内接円, 外接円, 傍接円 sdzzz
正解
2025年4月7日23:18 内接円, 外接円, 傍接円 miq_39
不正解
2025年4月7日23:15 内接円, 外接円, 傍接円 miq_39
不正解
2025年4月7日22:59 内接円, 外接円, 傍接円 arararororo
正解
2025年4月7日22:58 内接円, 外接円, 傍接円 arararororo
不正解
2025年4月7日22:27 内接円, 外接円, 傍接円 MrKOTAKE
正解
2025年4月7日22:25 内接円, 外接円, 傍接円 natsuneko
正解
2025年4月7日21:26 内接円, 外接円, 傍接円 ulam_rasen
正解
2025年4月7日21:21 内接円, 外接円, 傍接円 wasab1
正解
2025年4月4日20:52 内接円, 外接円, 傍接円 U.N.Owen
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

13,14,15

U.N.Owen 自動ジャッジ 難易度:
7月前

19

円 $\Omega$ に内接する三角形 $ABC$ があり,$AB=13,BC=14,CA=15$ を満たしています.
 線分 $BC$ の中点を $M$,$A$ を通り直線 $BC$ と直交する直線と $\Omega$ との交点のうち $A$ でない方を $D$ とします.
 直線 $AM,DM$ と $\Omega$ との交点のうちそれぞれ $A,D$ でない方を $P,Q$ とし,直線 $BC$ と直線 $PQ$ との交点を $R$ とするとき,三角形 $MQR$ の面積は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答してください.

一筆書きのスコアの総和

igma 自動ジャッジ 難易度:
7月前

38

問題文

$2$ 行 $2025$ 列のマス目の各マスに $1$ 以上 $4050$ 以下の整数を $1$ つずつ書き込む方法であって, 以下の条件を満たす書き込みを一筆書きと呼びます.

  • $1$ は $1$ 行 $1$ 列目のマスに書き込む.
  • $2$ 以上 $4050$ 以下の任意の整数 $k$ に対して,$k$ が書き込まれたマスは $k-1$ が書き込まれたマスに隣接する.

各一筆書きに対して,$2025$ が $i$ 行 $j$ 列目に書き込まれているとき,その一筆書きのスコアを $i+j$ で定めます.全ての一筆書きに対して,そのスコアを足し合わせた総和を求めてください.

F

nmoon 自動ジャッジ 難易度:
44日前

7

問題文

$AB \lt AC$ を満たす鋭角三角形 $ABC$ の垂心を $H$,とする.直線 $BH, CH$ と三角形 $ABC$ の外接円との交点をそれぞれ $E (\not = B) , F (\not = C)$ とし,辺 $AB , AC$ と 線分 $EF$ との交点をそれぞれ $P , Q$ とする.直線 $AC$ に関して $P$ と対称な点を $R$,直線 $AB$ に関して $Q$ と対称な点を $S$ とし,三角形 $RSH$ の外心を $O$ とすると,以下が成立した.

$$ AH = 3 , BC = 4 , AO = 1$$

このとき,$AB$ の長さを求めてください.

解答形式

互いに素な正整数 $b , c$ および正整数 $a$ を用いて $\dfrac{\sqrt{a} - b}{c}$ と表されるので,$a + b + c$ を答えてください.

C

nmoon 自動ジャッジ 難易度:
12月前

15

問題文

三角形 $ABC$ の外心を $O$,垂心を $H$,外接円を $\Gamma$ とする.そして,以下のように点を4つとる.

  • 直線 $BH$ と $\Gamma$ との交点を $P(\not=B)$ とする.
  • 直線 $PO$ と $\Gamma$ との交点を $Q(\not=P)$ とする.
  • 直線 $QH$ と $\Gamma$ との交点を $R(\not=Q)$ とする.
  • 直線 $RO$ と $\Gamma$ との交点を $S(\not=R)$ とする.

このとき,3点 $ C,H,S$ が同一直線上にあった.

$$AH=17 , AO=11$$

のとき,三角形 $ABC$ の面積を求めてください.

解答形式

答えを2乗した値は,互いに素な2つの正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表されるので,$a+b$ を求めてください.

My_Problem

Lim_Rim_ 自動ジャッジ 難易度:
7月前

48

問題文

$8$ つのアルファベット $\mathrm{I, M, L, I, M, R, I, M}$ を並べて得られる文字列であって,$\mathrm{L}$ が $\mathrm{R}$ より左にあるでかつ,$\mathrm{I}$ の右隣に $\mathrm{M}$ が来るものはいくつありますか.

Floor and Ceiling

Lim_Rim_ 自動ジャッジ 難易度:
7月前

31

問題文

方程式 $x^2 - 77\left\lfloor x \right\rfloor + 55\lceil x \rceil + 57 = 0$ の実数解の $2$ 乗の総和を解答してください.

備考

高校生時代(2016年)の作問のリメイクです.

OMC不採用問題1

sta_kun 自動ジャッジ 難易度:
16月前

9

問題文

凸四角形 $ABCD$ において,
$$AB=BD=7 ,BC=5,CD=4, 2∠ACB+∠ACD=180°$$

が成り立ちました.このとき,線分 $AD$ の長さは互いに素な自然数 $a,b$ を用いて $\dfrac{a}{b}$​ と表せるので $a+b$ を解答してください.

解答形式

半角数字で解答してください.
不備等あれば教えて下さい。

p2

lamenta 自動ジャッジ 難易度:
2月前

14

問題文

$\quad$三角形 $ABC$ において,内心を $I$ ,角 $A$ 内の傍心を $I_A$ ,外心を $O$ とすると,直線 $II_A$ と直線 $IO$ は垂直に交わった.線分 $BC$ の中点を $M$ ,線分 $II_A$ と線分 $BC$ の交点を $K$ とし,三角形 $MKI_A$ の重心を $G$ とすると, $$KM=1,KG=3$$が成立した.このとき,線分 $BC$ の長さを求めよ.

解答形式

求める値の二乗は互いに素な正の整数 $a,b$ を用いて $\dfrac ab$と表せるので, $a+b$ を半角数字で解答してください.

bMC_F

bzuL 自動ジャッジ 難易度:
16月前

20

問題文

ある三角形の内心を中心とする半径 $2024$ の円が,その三角形の頂点のうちの一つと,その三角形の外心,垂心を通りました.この三角形の外接円の半径としてあり得る値の総和の整数部分を求めてください.

解答形式

半角数字で解答してください.

2^{2^{10}} mod 2027

kzy33550336 自動ジャッジ 難易度:
7月前

59

問題文

$2^{2^{10}}$ を素数 $2027$ で割った余りを求めてください.

暁山瑞希 誕生日

shakayami 自動ジャッジ 難易度:
2月前

8

三角形 $ABC$ について, 内心を $I$ , $A$ に関する傍心を $I_A$ , $\angle A$ の二等分線と $BC$ の交点を $D$ , 三角形 $ABC$ の外接円上の点であって, 点 $A$ を含まない方の弧 $BC$ の中点を $M$ とします.

$AM=27,MI_A=8$ のとき, $ID$ の長さを求めてください. ただし, 答えは有理数となるため, 既約分数 $a/b$ と書いたときの $a+b$ を答えてください.

KOTAKE杯005(F)

MrKOTAKE 自動ジャッジ 難易度:
6月前

21

問題文

$AB<AC$ なる三角形 $ABC$ について,$AB=AD$ なる線分 $BC$ (端点を含まない) 上の点を $D$,円 $ABD$ と線分 $AC$ の交点を $E(\neq A)$,円 $BEC$ と線分 $AD$ の交点を $F$ とする.
直線 $BF$ と円 $FDC$ が再び交わる点を $P$ とすると,$AP\parallel BC$ かつ $PE=5, BC=12$ が成立したとき,$AB$ の長さの二乗は互いに素な正の整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.
Writer: pomodor_ap