整数問題

judgeman 自動ジャッジ 難易度: 数学 > 高校数学
2025年5月21日11:27 正解数: 3 / 解答数: 4 (正答率: 75%) ギブアップ数: 0

全 4 件

回答日時 問題 解答者 結果
2025年5月22日22:04 整数問題 Germanium32
正解
2025年5月21日14:31 整数問題 Weskdohn
正解
2025年5月21日14:26 整数問題 ゲスト
正解
2025年5月21日14:24 整数問題 ゲスト
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

整数問題

Ryomanic 自動ジャッジ 難易度:
2月前

10

問題文

0,1,2,……,8 の数字から一つずつ選んでa,b,c,d,e,f,gに代入するという操作を考える。
数字の重複を許さないとき、十進表記された7桁の数abcdefgが3の倍数となる確率を求めよ。
ただし、a=0の場合も認めます。

解答形式

互いに素な正整数q,pを用いて
p/q と表せるため、p+qを解答してください。

整数問題

Ryomanic 自動ジャッジ 難易度:
2月前

7

問題文

0,1,2,……,8 の数字から一つずつ選んでa,b,c,d,e,f,gに代入するという操作を考える。
数字の重複を許すとき、十進表記された7桁の数abcdefgが3の倍数となる確率を求めよ。
ただし、a=0の場合も認めます。
(似た問題を投稿しています。解答する場所を間違えないように注意してください。)

解答形式

互いに素な正整数p,qを用いてp/qと表せるため
p+qを解答してください。

不等式

skimer 採点者ジャッジ 難易度:
17日前

1

問題文

$a>0,b>0$ のとき、
$a^{4}+4a^{3}b+2a^{2}b^{2}+4ab^{3}+b^{4}\geq0$ を示せ

解答形式

記述形式でお願いします
入力がめんどくさい方は、紙に書いて、twitterのDMに送ってください

第1問

sulippa 採点者ジャッジ 難易度:
15日前

1

設問1

数列 ${a_n}$ が $a_1 = 1, a_2 = 4$ および漸化式 $a_{n+2} - 4a_{n+1} + 4a_n = n \cdot 2^n$ ($n \ge 1$) を満たすとき、一般項 $a_n$ を求めよ。

解答形式

半角1スペースで答えのみ

第9問

sulippa 採点者ジャッジ 難易度:
15日前

1

設問9

数列 ${a_n}$ ($a_n \in {0,1,2,3,4}$) が $a_1=1, a_2=1$ および漸化式 $a_{n+2} \equiv a_{n+1} + a_n \pmod{5}$ ($n \ge 1$) を満たすとする。$a_{2025}$ の値を求めよ。

解答形式

例)ひらがなで入力してください。

8月前

3

問題文

$f(x)=\frac{3-x}{ \sqrt{3(x+2)(-2x+1)}}$ $ (-2<x<0)$ とする
$f(x)$ が最小値を取るときの $x$ の値を求めよ

解答形式

解答は$-\frac{㋐}{㋑}$の形で表されるので、1行目に㋐を、2行目に㋑を半角数字で入力してください

いつものking property(に似た)問題

nps 自動ジャッジ 難易度:
3月前

1

問題文

∮(-π/6→π/3) ((sinx)^3)/(sinx+cosx)dxの値を求めよ。

解答形式

解答は π/a-(√ b+c)/d-(1/e)log(√f+g)の形になります。
a,b,c,d,e,f,gに当てはまる自然数を順に半角で答えてください。
また、1つの値の間は1つずつ空白を開けるようにしてください。
(例)a=2, b=3, c=11,d=5,e=6,f=7,g=8の場合、
2 3 11 5 6 7 8

No.07 三角形と必要条件

Prime-Quest 自動ジャッジ 難易度:
15月前

1

問題

整数 $x,y$ と数列 $z_k=|x-k|+|y-k|$ に対し,次の命題は $xy\leqq 7!$ の反例を何組もつか.

  • ある非負偶数 $k$ で $z_k\lt 2$ は,辺長 $x^3+8,\ y^3+8,\ 6xy+8$ の三角形が存在する必要条件である.

解答形式

半角数字で入力してください.

第4問

sulippa 採点者ジャッジ 難易度:
15日前

1

設問4

数列 ${a_n}$ が $a_0=1, a_1=0, a_2=-1$ および漸化式
$$ a_{n+3} - 3a_{n+2} + 3a_{n+1} - a_n = 2^n \quad (n \ge 0) $$
を満たす。一般項 $a_n$ を求めよ。

解答形式

例)ひらがなで入力してください。

過去垢の問題(整数②)

katsuo_temple 自動ジャッジ 難易度:
6月前

6

問題文

$0$時$0$分〜$23$時$59$分とする時刻$A$時$B$分について、$60A+B,100A+B$が共に平方数となるとき、$A×B$の総和を求めよ。

解答形式

半角数字で解答して下さい。

No.09 関数の値と点対称

Prime-Quest 自動ジャッジ 難易度:
15月前

2

問題

次の関数が $|x-a|\leqq 1$ のもとで負の値と素数の値域幅をとるとき,$\sqrt b$ の平均を求めよ.

  • 二次関数 $y=f(x)$ のグラフは曲線 $y=x^2$ と接しつつ点 $(a,b)$ で対称となる.

解答形式

$100$ 倍した整数部分を半角数字で入力してください.

※ 問題を一部修正しました.今後も手直しが続く可能性があります.


問題文

nを一桁の自然数とする。xについての多項式、

∫(0→x) (t^3 + {1/√(n-2)(n-3)(n-4)} t^-2 +1)^n dt

について、x^6の係数を自然数にするようなnを求めなさい。

解答形式

半角で一桁の数字を入力してください。