KOTAKE杯006(F)

MrKOTAKE 自動ジャッジ 難易度: 数学 > 競技数学
2025年7月9日21:00 正解数: 6 / 解答数: 8 (正答率: 75%) ギブアップ不可
この問題はコンテスト「KOTAKE杯006」の問題です。

全 8 件

回答日時 問題 解答者 結果
2025年9月28日23:59 KOTAKE杯006(F) nmoon
正解
2025年9月28日23:59 KOTAKE杯006(F) nmoon
不正解
2025年7月10日17:04 KOTAKE杯006(F) Zet_sigm
正解
2025年7月10日11:20 KOTAKE杯006(F) katsuo_temple
正解
2025年7月9日22:09 KOTAKE杯006(F) keisan
不正解
2025年7月9日21:49 KOTAKE杯006(F) natsuneko
正解
2025年7月9日21:32 KOTAKE杯006(F) miq_39
正解
2025年7月9日21:26 KOTAKE杯006(F) sdfsdf
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

18月前

7

問題文

下図で、AB=AF=BC=CD=EB、$∠$EAB=80°、$∠$ABC=40°です。
$∠$FDEの大きさは何度ですか。

解答形式

半角数字で入力してください。
例)10

KOTAKE杯006(E)

MrKOTAKE 自動ジャッジ 難易度:
2月前

30

問題文

鋭角三角形 $ABC$ があり,その外心を $O$ とし,$\angle BAC$ の二等分線と辺 $BC$ の交点を $D$ とすると,
$$BD=3,\quad AC=10,\quad \angle ADO=90^\circ$$
が成立しました.このとき,線分 $AD$ の長さの $\mathbf{4}$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

求値問題4

Kinmokusei 自動ジャッジ 難易度:
4年前

9

問題文

△ABCにおいて、垂心をH、外心をOとするとAB//HOであった。このとき、∠Cの角度としてあり得る値の範囲を求めてください。
ただし、OとHが一致する場合は除きます。

解答形式

∠Cの範囲は度数法で表すと、$(0°<)\alpha°<C<\beta°(<180°)$となります。
$\alpha+\beta$を半角数字で解答してください。

400G

poino 自動ジャッジ 難易度:
15月前

9

問題文

$AB=13,BC=14,CA=15$ を満たす三角形 $ABC$ において、外心を $O$、辺 $AB$ の中点を $M$、辺 $AC$ の中点を $N$、$A$ から辺 $BC$ に下ろした垂線の足を $D$ とします。また、円 $DMN$ と $AD$ の交点を $X$、$MN$ について $X$ と対称な点を $Y$ とします。このとき四角形 $BCOY$ の面積を求めてください。

解答形式

半角数字で入力してください。

不採用幾何

sdzzz 自動ジャッジ 難易度:
14月前

10

問題文

三角形 $ABC$ があり,外心を $O$ とした時以下が成り立ちました.
$$
AB+AC=2BC,\quad AB\times AC=24,\quad AO=5
$$
この時,三角形 $ABC$ の内接円の半径の値を求めてください.ただし求める値は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で入力してください.

求角問題11

Kinmokusei 自動ジャッジ 難易度:
4年前

10

問題文

正方形と正三角形を組み合わせた以下の図において、青で示した角の大きさを求めてください。

解答形式

半角数字で解答してください。
解答は度数法で、単位を付けずに0以上180未満の整数として解答してください。

KOTAKE杯006(D)

MrKOTAKE 自動ジャッジ 難易度:
2月前

25

問題文

$AB=AC$ を満たす鋭角三角形 $ABC$ があり,その外接円上に点 $D(\neq B)$ を,$AC\perp BD$ を満たすようにとると,
$$CD=3,\quad AD=7$$
が成立しました.このとき,線分 $AB$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

求長問題27

Kinmokusei 自動ジャッジ 難易度:
4年前

15

問題文

図の条件が成り立つ三角形において、$x$ で示した辺の長さを解答してください。

解答形式

$x=\sqrt{\fbox{アイウ}}$ と表されるので、文字列 アイウ を解答してください。

19月前

12

問題文

$\triangle{ABC}$ の辺 $AC$ に接する傍接円の中心を $I_B$,辺 $AB$ に接する傍接円の中心を $I_C$ とし,$I_BI_C$ の中点を $M$ とする.
$I_BI_C=14,BC=10$ のとき,$\triangle{MBC}$ の面積を $2$ 乗した値を解答してください.

解答形式

半角数字で解答してください

求面積問題24

Kinmokusei 自動ジャッジ 難易度:
4年前

13

問題文

扇形内部に図のように線を引きました。青い三角形の面積が12のとき、緑の三角形の面積を求めてください。

解答形式

半角数字で解答してください。

求角問題7

Kinmokusei 自動ジャッジ 難易度:
4年前

13

問題文

図のように正五角形と正三角形が配置されています。緑の$x$で示した角度を求めてください。
なお、赤で示した2つの線分は長さが等しく、青で示した角は直角です。

解答形式

度数法で、単位を付けずに0以上180未満の数を半角数字で解答してください。

三角形の重心と内心

tb_lb 自動ジャッジ 難易度:
2年前

10

【補助線主体の図形問題 #110】
 今週の図形問題です。このところ五心の活躍が多いですが、今回登場するのは重心と内心。この2点が平行線でつながっています。これらの図形が織りなす性質を楽しんでください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。