p3

lamenta 自動ジャッジ 難易度: 数学 > 競技数学
2025年8月22日21:00 正解数: 2 / 解答数: 3 (正答率: 66.7%) ギブアップ数: 0
この問題はコンテスト「LGC short」の問題です。

問題文

$\quad$鋭角三角形 $ABC$ において, $B$ を通り直線 $AC$ に平行な直線上に点 $P$ を, $C$ を通り直線 $AB$ に平行な直線上に点 $Q$ をそれぞれとると, $A,P,Q$ はすべて直線 $BC$ に関して同じ方にあり, $\angle APB=\angle AQC$ が成立した.また,三角形 $PAB$ の外接円と三角形 $QAC$ の外接円が再び交わる点を $X$ とし,直線 $PQ$ と直線 $BX,CX$ の交点をそれぞれ $R,S$ とすると,
$$\cos\angle BXC=\frac 15,CX-BX=5,XR:XS=5:3$$が成立した.さらに,線分 $BC$ の中点を $M$ ,直線 $AX$ と三角形 $PXQ$ の外接円が再び交わる点を $T$ とし,三角形 $TPQ$ の内心を $I$ とすると,直線 $AX$ と直線 $MI$ は平行であった.このとき,線分 $XI$ の長さを求めよ.

解答形式

求める値の二乗は互いに素な正の整数 $a,b$ を用いて $\dfrac ab$と表せるので, $a+b$ を半角数字で解答してください.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

TMC001(I)

hya_math 自動ジャッジ 難易度:
36日前

9

鋭角三角形$ABC$について,その垂心を$H$,外心を$O$,線分$AB$,$BC$,$CA$の中点をそれぞれ$L,M,N$とします.円$OMN$と直線$LN,LO,LM$の交点のうち,$N,O,M$でないほうをそれぞれ$P,Q,R$とすると以下が成立しました.
$$
AH=6,LN=4, PC\perp CR.
$$
この時,線分$OQ$の長さの二乗の値は互いに素な正の整数$a,b$を用いて$\frac ab$と表せるので$a+b$を回答してください.

Humpty Point

MrKOTAKE 自動ジャッジ 難易度:
4月前

2

問題文

鋭角三角形 $ABC$ があり,$A,B$ から対辺におろした垂線の足をそれぞれ $D,E$ とし,線分 $DE$ 上に点 $P$ をとると,以下が成立しました.

$$AB=3,\quad AC=5,\quad \angle PAB=\angle PBC,\quad \angle PAC =\angle PCB $$
このとき線分 $AP$ の長さは互いに素な正の整数 $a,b$ を用いて $\displaystyle \frac{a}{b}$と表されるので $a+b$ を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください

自作問題No.1

Tehom 自動ジャッジ 難易度:
17月前

8

問題文

凸四角形$ABCD$は$\angle{BAC}$$=$$12^\circ$$,$$\angle {CAD}$$=$$30^\circ$$,$$\angle{ACD}$$=$$24^\circ$$,$$AB=CD$を満たします.このとき、$\angle{ADB}$の値は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$度となるので、積$ab$の値を求めてください.

解答形式

半角数字で解答してください.

TMC001(D)

OooPi 自動ジャッジ 難易度:
36日前

7

正整数 $a,b$ であって以下が整数になるようなすべての組 $(a,b)$ について $ab$ の総和を求めてください
$$
\frac{(3ab+2a+4b-6)^2}{13(a^2b^2+a^2+4b^2+4)}
$$

暁山瑞希 誕生日

shakayami 自動ジャッジ 難易度:
2月前

8

三角形 $ABC$ について, 内心を $I$ , $A$ に関する傍心を $I_A$ , $\angle A$ の二等分線と $BC$ の交点を $D$ , 三角形 $ABC$ の外接円上の点であって, 点 $A$ を含まない方の弧 $BC$ の中点を $M$ とします.

$AM=27,MI_A=8$ のとき, $ID$ の長さを求めてください. ただし, 答えは有理数となるため, 既約分数 $a/b$ と書いたときの $a+b$ を答えてください.

TMC001(G)

hya_math 自動ジャッジ 難易度:
36日前

11

鋭角三角形$ABC$について,その外接円を$\Gamma$,外心を$O$,垂心を$H$,点$A$から辺$BC$に下した垂線の足を$D$とします.さらに,直線$AO$と辺$BC$の交点を$E$,直線$AO$と$\Gamma$の交点を$F$とすると以下が成立しました.
$$
OH=10, DH=12, EF=13
$$
このとき$\Gamma$の面積としてありうるものの総和は互いに素な正の整数$a,b$を用いて$\frac ab\pi$と表せるので$a+b$を回答してください.

F

nmoon 自動ジャッジ 難易度:
44日前

7

問題文

$AB \lt AC$ を満たす鋭角三角形 $ABC$ の垂心を $H$,とする.直線 $BH, CH$ と三角形 $ABC$ の外接円との交点をそれぞれ $E (\not = B) , F (\not = C)$ とし,辺 $AB , AC$ と 線分 $EF$ との交点をそれぞれ $P , Q$ とする.直線 $AC$ に関して $P$ と対称な点を $R$,直線 $AB$ に関して $Q$ と対称な点を $S$ とし,三角形 $RSH$ の外心を $O$ とすると,以下が成立した.

$$ AH = 3 , BC = 4 , AO = 1$$

このとき,$AB$ の長さを求めてください.

解答形式

互いに素な正整数 $b , c$ および正整数 $a$ を用いて $\dfrac{\sqrt{a} - b}{c}$ と表されるので,$a + b + c$ を答えてください.

002

1024 自動ジャッジ 難易度:
2年前

3

問題文

座標平面上の $|x|≦1$ かつ $|y|≦1$ を満たす領域を $D$ とする。また傾き $1$ の直線を $l$, $y=x^2$ のグラフを平行移動したグラフ $C$ の頂点を $P$ とする。$l$ を $D$ と共有点を持つように, $C$ を $P$ が $D$ 内に存在するように無作為にとるとき, $l$ と $C$ が交わる確率を求めよ。

解答形式

少数第4位を四捨五入して, 少数第3位までを,半角数字で解答してください。

求値幾何

Ryomanic 自動ジャッジ 難易度:
3月前

7

問題文

△ABCの内接円が辺ABと点D、辺BCと点E、辺CAと点Fで接する。角ACBの二等分線と辺ABの交点をG点Dから線分EFに引いた垂線と辺BCの交点をH とすると、
$$BG=8,BD=6,BH=\frac{31}{2}$$
となった。
この時HCの長さを求めよ。

解答形式

求める長さは互いに素なa,bで$$\frac{a}{b}$$と表せるのでa+bを解答してください。

幾何

katsuo_temple 自動ジャッジ 難易度:
12月前

4

問題文

$∠B=60°$を満たす鋭角三角形$ABC$について、その内接円が$AC,AB$にそれぞれ$D,E$で接している。$∠B$の二等分線と直線$DE$の交点を$F$とすると以下が成立した。
$$
AB=4 CF=3
$$
$F$を通り$AB$と平行な直線と$AC$の交点を$G$とするとき、$CG²$の値を求めてください。

解答形式

半角で解答してください。

OMC不採用問題1

Tehom 自動ジャッジ 難易度:
11月前

4

問題文

$\displaystyle\frac{728^{3^m}+730^{3^n}}{3^{m+n}}$ が整数となるような正整数 $(m,n)$ の組すべてについて, $mn$ の総和を求めてください.

解答形式

半角数字で解答してください.

解の配置問題

zyogamaya 自動ジャッジ 難易度:
4年前

5

問題文

$x$に関する3次方程式$x^3+ax+b=0$($a,b$は実数)の3解の絶対値がすべて1以下となる$a,b$の必要十分条件が表す領域を$ab$平面に図示し、その面積を求めよ。

解答形式

面積の値のみを解答してください。答えは分数になるので/を用いて入力してください。
例:$\displaystyle\frac{5}{7}$→5/7