$\lim\limits_{n\to\infty} n\sin\frac{2π}{n} = mπ$ である。 $m$の値を求めよ。
$m$は2つの実数$a,b$を使って $\frac{a}{b}$と表せる。 $m$を分母が有理化された既約分数の形にした時の$a+b$を解答すること。
円に内接する正多角形を考えましょう。 *ギブアップしても解説はありません。
正n角形を外接円の半径を辺にもつn個の三角形に分割して考えてみましょう。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
実数$x,y$が $$ \begin{cases} x^2+y^2=1\\ 2x^3+2y^3=1 \end{cases} $$ を満たしているとき,$x+y$ のとりうる値をすべて求めよ.
解答に$sinθ,cosθ$を含む場合は,$cosθ(0<θ<π)$に統一し,記入例にしたがって全て$半角$で解答してください.なお,度数法で解答すると不正解となるので,弧度法を用いてください. 小数などを用いた近似値での解答は不正解となります. 複数の解答がある場合は小さい値から順に上から改行してください.
記入例 3cos(5π/6) 3cos(π/3)
円に内接する $8$ 角形 $ABCDEFGH$ が $\angle{A}=121^{\circ},\angle{B}=122^{\circ},\angle{C}=123^{\circ},\angle{D}=124^{\circ},\angle{E}=125^{\circ},\angle{F}=126^{\circ}$ を満たすとき,$\angle{G}$ の大きさを度数法で解答してください.
半角数字で解答してください.
$5\times5$ のマス目の異なる $2$ つのマスにナイトの駒を $1$ つずつ置き,「ナイトの駒の動きに従って $2$ つの駒を同時に動かす」という操作を繰り返したところ,$2$ つの駒が同じマスに止まりました. このとき,最初にナイトの駒を置いた $2$ マスの組み合わせとしてあり得るものの総数を求めてください.
$$問 題$$ $実数全体で定義され、実数値を取る定数でない関数f(x)がある。$ $この関数が任意の実数x,yに対して恒等式$ $$f(x ^2+y)=f(kx ^2+2y)−f(3x ^2)$$ $を満たすとき、定数kの値を求めよ。$
整数 $x$ と素数 $p$ が、以下の連立合同式を満たす。
$x \equiv p \pmod{9797}$ $x \equiv 11p + 69 \pmod{9991}$
この条件を満たす最小の素数 $p$ を求めよ。
半角左詰め
$\triangle ABC$において$AC$,$AB$の中点をそれぞれ$M$,$N$とし, 線分$BM$,$CN$上(端点を除く)にそれぞれ点$D$,$E$をとります. 直線$AD$,$AE$と線分$BC$の交点をそれぞれ$P$,$Q$としたとき,$$\frac{AP・PD}{PB}=MN-PC$$$$\frac{AQ・QE}{QC}=MN-QB$$が成立しました. $∠ADB=101°$,$∠BEN=62°$,$∠DCB=41°$のとき, $∠AED$の角度を度数法で解答してください.
半角数字で入力してください.
$n$を整数とする。$n^{8}-n^{2}$を割り切る最大の自然数を求めよ。
半角数字で入力してください。
₁₃₅C₃₀を7で割った余りを求めてください。
三角形 $ABC$ について, 内心を $I$ , $A$ に関する傍心を $I_A$ , $\angle A$ の二等分線と $BC$ の交点を $D$ , 三角形 $ABC$ の外接円上の点であって, 点 $A$ を含まない方の弧 $BC$ の中点を $M$ とします.
$AM=27,MI_A=8$ のとき, $ID$ の長さを求めてください. ただし, 答えは有理数となるため, 既約分数 $a/b$ と書いたときの $a+b$ を答えてください.
以下の式を満たす素数の組$(a,b,c,d)$について、$abcd$の総和を求めよ。 $$ 4a²+b²+c²=d² $$
半角数字で解答してください。
正整数 $N$ が 素直 であるとは以下の条件をともに満たすことを言います.
素直な整数の総和を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
以下の等式を満たす $0$ 以上の整数 $x$ をすべて求めよ。解答する際は、解答形式を参照すること。
$$ \left\lfloor \sqrt{x} \, \right\rfloor + \left\lceil \sqrt{x} \, \right\rceil = x $$
ただし、実数 $x$ に対して $\lfloor x \rfloor$ は $x$ 以下の最大の整数、$\lceil x \rceil$ は $x$ 以上の最小の整数をいう。
答えを小さい順に並び替え、半角数字で一つずつ改行で区切って答えてください。 末尾に改行はあってもなくても構いませんが、各行にスペース等は入れないでください。
例)答えが $-1,8,9,10$ のとき
-1 8 9 10
と解答してください。