関数方程式 解説修正版

Sry 自動ジャッジ 難易度: 数学 > 高校数学
2025年9月7日19:59 正解数: 3 / 解答数: 8 (正答率: 37.5%) ギブアップ数: 4

全 8 件

回答日時 問題 解答者 結果
2025年9月15日21:19 関数方程式 解説修正版 ゲスト
正解
2025年9月11日8:27 関数方程式 解説修正版 udonoisi
正解
2025年9月8日21:14 関数方程式 解説修正版 Ryomanic
不正解
2025年9月8日21:06 関数方程式 解説修正版 Ryomanic
不正解
2025年9月8日21:05 関数方程式 解説修正版 Ryomanic
不正解
2025年9月8日21:02 関数方程式 解説修正版 Ryomanic
不正解
2025年9月8日9:09 関数方程式 解説修正版 smasher
不正解
2025年9月7日21:42 関数方程式 解説修正版 Weskdohn
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

TMC001(H)

OooPi 自動ジャッジ 難易度:
11日前

11

問題文

正整数列 $A_{n}$ を以下のように定義する
$$
1個の2 以上の正整数を要素に持ち,それらの総積が n に等しい
$$  この時 $A_{2^{100}}$ としてありうる数列すべてについて,その要素の
総和を $97$ で割った余りを答えてください。
  ただし,並び替えて一致するものも別々として数える。
例えば $A_{8}$ としてありうるものは $\lbrace8\rbrace,\lbrace2,4\rbrace, \lbrace4,2\rbrace, \lbrace2,2,2\rbrace$ でありその要素の総和は $8+2+4+4+2+2+2+2=26$ である。

解答形式

正整数で答えてください

組み合わせ

suth 自動ジャッジ 難易度:
4月前

8

1から2pの2p個の異なる自然数を全て並べる時に隣り合う二つの積が常に偶数になる通りをSpとするとき、それがpで最大何回割れるか答えろ.
(ただしpは素数とする)

(半角の自然数が答え)

問題3

sulippa 自動ジャッジ 難易度:
3月前

7

問題文

$p=3, \quad q=5, \quad r=7$

$X = p^q + q^p$
$Y = q^r + r^q$
$Z = r^p + p^r$

$N = X^p + Y^q + Z^r$

このとき、$N$を$105$で割った余りを求めよ。

解答形式

半角左詰め

関数方程式

Sry 自動ジャッジ 難易度:
46日前

7

問題

$実数全体で定義され、実数値を取る定数でない関数f(x)がある。$
$この関数が任意の実数x,yについて恒等式$
$$f(x^2+y)=f(kx^2+2y)-f(3x^2)$$
$を満たすとき、定数kの値を求めよ。$

問題2

sulippa 自動ジャッジ 難易度:
3月前

5

問題文

整数 $x$ と素数 $p$ が、以下の連立合同式を満たす。

$x \equiv p \pmod{9797}$
$x \equiv 11p + 69 \pmod{9991}$

この条件を満たす最小の素数 $p$ を求めよ。

解答形式

半角左詰め

第3問

sulippa 自動ジャッジ 難易度:
4月前

11

問題

$P(x)$ は整数係数の monic な (最高次の係数が1の) 3次多項式 であるとする。方程式 $P(x) = 0$ は、相異なる3つの整数解を持 つことが分かっている。
$P(0)=6$
$P(1)=4$
のとき、$P(4)$の値を求めよ。

解答形式

半角でスペースなし

問題1

sulippa 自動ジャッジ 難易度:
3月前

21

問題文

$3^{2025}$を $11$ で割った余りを求めよ。

解答形式

半角左詰め

TMC001(I)

hya_math 自動ジャッジ 難易度:
11日前

9

鋭角三角形$ABC$について,その垂心を$H$,外心を$O$,線分$AB$,$BC$,$CA$の中点をそれぞれ$L,M,N$とします.円$OMN$と直線$LN,LO,LM$の交点のうち,$N,O,M$でないほうをそれぞれ$P,Q,R$とすると以下が成立しました.
$$
AH=6,LN=4, PC\perp CR.
$$
この時,線分$OQ$の長さの二乗の値は互いに素な正の整数$a,b$を用いて$\frac ab$と表せるので$a+b$を回答してください.

Lucas

shippe 自動ジャッジ 難易度:
47日前

14

問題文

₁₃₅C₃₀を7で割った余りを求めてください。

解答形式

半角数字で入力してください。

200A

Nyarutann 自動ジャッジ 難易度:
2月前

10

問題文

正整数値に対して定義され正整数値をとる関数 $f(x)$ は,任意の正整数 $a, b, c$ において,以下を満たしました.
$$
f(a)+f(b)+f(c)=f(abc)+2
$$また,$f(15)=15$ を満たすとき,$f(2025)$ としてあり得る値の総和を求めてください.

解答形式

半角数字で解答してください.

素因数分解

sembri 自動ジャッジ 難易度:
59日前

17

63999271を素因数分解した時に出てくる素因数全ての和を求めなさい。

例:35の時
 5+7=12と解答。

TMC001(G)

hya_math 自動ジャッジ 難易度:
11日前

11

鋭角三角形$ABC$について,その外接円を$\Gamma$,外心を$O$,垂心を$H$,点$A$から辺$BC$に下した垂線の足を$D$とします.さらに,直線$AO$と辺$BC$の交点を$E$,直線$AO$と$\Gamma$の交点を$F$とすると以下が成立しました.
$$
OH=10, DH=12, EF=13
$$
このとき$\Gamma$の面積としてありうるものの総和は互いに素な正の整数$a,b$を用いて$\frac ab\pi$と表せるので$a+b$を回答してください.