整数 ${n}$ に対して定義される数列 ${a_n}$ が $${a_0=2, a_1=4, a_{n+2}-4a_{n+1}+a_n=0}$$ を満たしている。 $${a_{2026}-a_{-2026}}$$ を求めよ。
整数で入力してください
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
正の整数 ${n}$ に対して定義される数列 ${a_n}$ が $${a_1=2, a_2=-4, a_{n+2}-2a_{n+1}+4a_n=0}$$ を満たしている。 ${|a_{2025}|}$ の正の約数の個数を求めよ。
$0,a,b,c$ は相異なる実数で,$a^3b+b^3c+c^3a=ab^3+bc^3+ca^3$ を満たすとき,次の値を求めよ.$$\min_{a,b,c}\dfrac{(a^3+b^3+c^3)(a^4+b^4+c^4+50)}{a^5+b^5+c^5}$$
半角数字で入力してください.
$ $ $0$ 以上 $9$ 以下の整数 $a, b, c, d$ に対し,数列 $(x_0, x_1, ..., x_{1110})$ を次のように定めます:
$x_{1110}$ のとり得る値の総和を求めて下さい.
答えは非負整数値であることが保証されます.半角英数にし,答えとなる非負整数値を入力し解答して下さい.
$\omega$ を $1$ の $3$ 乗根のうち $1$ でないものの一方とします. $$S={\sum_{k=1}^{2026} \frac{1}{k^2+(2\omega+1)k-1}}$$ としたとき,$\left|\frac{S-1}{S}\right|$ を求めてください.
求める値は互いに素な正の整数 $a,b$ を用いて $\frac{a}{b}$ と表せるので, $a+b$ を解答してください.
$f(x)=\frac{3-x}{ \sqrt{3(x+2)(-2x+1)}}$ $ (-2<x<0)$ とする $f(x)$ が最小値を取るときの $x$ の値を求めよ
解答は$-\frac{㋐}{㋑}$の形で表されるので、1行目に㋐を、2行目に㋑を半角数字で入力してください
$202\times5$ のマス目があり,それぞれのマスに上下左右のいずれかの矢印が書かれており,以下の $2$ つを満たしました.
任意のマスについて,そのマスに書かれている矢印の方向に動くということを繰り返すことで元のマスに戻ることができる.
互いに向かい合っているような矢印は存在しない.
$3$ 列目に書かれた $202$ 個の矢印の中に,左向きの矢印は存在しない.
条件を満たすように矢印を書き込む方法は $N$ 通りあります.$N$ を$2$ つの素数の積 $197\times199$ で割った余りを求めてください.
半角数字で解答してください.
$$ p^{q+r} +q^{p+r} +r^{p+q}が素数となるような10以下の素数の組(p,q,r)の個数を求めよ。 $$
半角数字で解答してください。覚悟して解いてください。
設問4
数列 ${a_n}$ が $a_0=1, a_1=0, a_2=-1$ および漸化式 $$ a_{n+3} - 3a_{n+2} + 3a_{n+1} - a_n = 2^n \quad (n \ge 0) $$ を満たす。一般項 $a_n$ を求めよ。
例)ひらがなで入力してください。
∮(-π/6→π/3) ((sinx)^3)/(sinx+cosx)dxの値を求めよ。
解答は π/a-(√ b+c)/d-(1/e)log(√f+g)の形になります。 a,b,c,d,e,f,gに当てはまる自然数を順に半角で答えてください。 また、1つの値の間は1つずつ空白を開けるようにしてください。 (例)a=2, b=3, c=11,d=5,e=6,f=7,g=8の場合、 2 3 11 5 6 7 8
整数 $x,y$ と数列 $z_k=|x-k|+|y-k|$ に対し,次の命題は $xy\leqq 7!$ の反例を何組もつか.
設問1
数列 ${a_n}$ が $a_1 = 1, a_2 = 4$ および漸化式 $a_{n+2} - 4a_{n+1} + 4a_n = n \cdot 2^n$ ($n \ge 1$) を満たすとき、一般項 $a_n$ を求めよ。
半角1スペースで答えのみ
正の実数 $a,b,c,d$ が, $$ 2(a^2+b^2+c^2+d^2)=(a+b+c+d)^2+8\sqrt{abcd} $$ を満たす時,以下の値の最小値を求めて下さい.ただし求める値は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので $a+b$ の値を解答してください. $$ \dfrac{6a+8b+9c}{d} $$