数列$\ a_{n}$は以下のように定義されます. $$a_{1}=1,a_{n+1}=2a_{n}+2\cos\frac{n\pi}{3}$$ このとき,$$\displaystyle\sum_{k=1}^{50000}a_{k}$$の正の約数の個数を解答してください.
整数で解答してください.
$6\ $の倍数で…?
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
半径$15$の円$ω$について,ある直径$AB$を考える. $AB$を三等分する点を順に$P,Q$とし(つまり$A・P・Q・B$の順に点が並ぶ), $AP$を直径とする円$X$を描く. また,$AB$に直交する直径$CD$について,同様に$R,S$を取り($C・R・S・D$の順),$CR$を直径とする円$X'$を描く. ここで,円$X$の接線の内,$CD$と平行で且つ円$X'$側のものを直線$F$,円$X'$の接線の内,$AB$と平行で且つ円$X$側のものを直線$G$とする. 直線$F,G,$円$ω$に接する円$T$として考えられるものは$2$つあるが,そのうち小さい方の半径を求めよ.
答えは整数$n,m,l$で$n√m+l$と書ける. $n+m+l$を求めて下さい. 尚,マイナス含め,全て半角で打ち込むこと.
続編(normal):https://pororocca.com/problem/2048/
以下の値を求めてください。 $$ \sum_{n=1}^{90}\sum_{k=1}^{n}\Big\lfloor{\frac{46}{91}+\frac{k-1}{n}}\Big\rfloor $$
答えは整数値になるので、半角数字で入力してください。
aiueaiuの7字を並べるとき少なくとも1つの「ai」が「ue」よりも前にあるのは何通りか。
例)半角英数字。
点の定義は次をチェック(https://pororocca.com/problem/2047/) 円$X,X',ω$に接する円の内,小さい方の円$T'$の半径を求めよ.
答えは互いに素な整数$a,b,c,d$を用いて,$\frac{a+b√c}{d}$と書けるので,$a+b+c+d$を求めて下さい.但し$d>0$とします. なお,半角で打ち込むこと.
例)(1)はb√c/aとなるので、a,b,cの値をそれぞれ1,2,3行目に書いてください ⑵はdπ/eとなるので、d,eの値を4,5行目に書いてください
△ABCについて、Aから直線BCに下ろした垂足をD、点Bから直線CAに下ろした垂足をE、△ABCの垂心をHとしたとき以下が成立しました。$$AH=3,AE=2,AC=5$$△AHB:△HCDは互いに素な自然数a,bを用いてa:bと表せるのでa+bの値を解答してください。
半角数字を入力してください。
ある円周上に点をランダムに無限個打ち,打った順に $A_1,A_2,A_3,\cdots$ とします.また,以下のルールに従い点つなぎを行います.
引くことの出来る線分の本数の期待値を $E$,分散を $V$ としたとき $V=f(E)$ となる整数係数多項式 $f$ がただ $1$ つ存在するので,$|f(1685)|$ の値を解答してください.
半角数字で解答してください
xy平面上にて、中心が直線y=3x上にあり、直線2x+y=0に接し、点(2,1)を通る円の方程式は(x-a)^2+(x-b)^2=r^2である。 a、b、r^2の値をそれぞれ求めよ。
a○b△R□ ○△□のところに答えの数字を入力してください。 r^2はRと表記してください。 a=2 b=3 r^2=4の場合 a2b3R4と入力
正の整数 ${n}$ に対して定義される数列 ${a_n}$ が $${a_1=2, a_2=-4, a_{n+2}-2a_{n+1}+4a_n=0}$$ を満たしている。 ${|a_{2025}|}$ の正の約数の個数を求めよ。
整数で入力してください
以下の漸化式で与えられる数列${a_n},{b_n}$を考える。ただし、$n$は非負整数であるとし、${a_n}$の初項は$a_0=1$とする。 $\displaystyle a_{n+1}=\sum_{k=0}^na_ka_{n-k} , \displaystyle b_{n+1}=\sum_{k=0}^n (k+1)a_ka_{n-k}$ (1)$b_n$を$a_n$で表わせ。 (2)$\displaystyle a_{n+1}=\frac{2(2n+1)}{n+2}a_n$を証明せよ。 (3)それぞれの数列の一般項$a_n,b_n$を求めよ。 (4)$\displaystyle \lim_{n \to \infty} \sqrt[n]{a_n}$を求めよ。ただし$\displaystyle\lim_{n \to \infty} \frac{\log n}{n}=\lim_{n \to \infty} \frac{\log(n+1)}{n}=0$を証明無しで用いても良い。
(4)の答えを半角数字またはTeXで入力してください。 (1)~(3)についてはお手持ちの紙に解答し、解説を確認ください。
三角形 $ABC$ について,辺 $BC,CA,AB$ の中点をそれぞれ $D,E,F$ とし,三角形 $ABC, DEF$ の垂心をそれぞれ $H_1, H_2$ とすると,以下が成立しました.$$H_1H_2=3\sqrt{3},\quad DH_2=1,\quad \angle{H_1H_2D}=150^{\circ}$$このとき,三角形 $ABC$ の面積の $2$ 乗の値を求めてください.
半角数字で入力してください。
三角形$ABC$の内心を$I$,直線$AI$と$BC$の交点を$D$とすると$AI=CI=CD=6 $であった. このとき$AC$の長さは正の整数$a,b $を用いて$ \sqrt{a} +b$と表せるので, $a+b$を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.