整数問題(倍数)

zyogamaya 自動ジャッジ 難易度: 数学 > 高校数学
2020年9月27日0:13 正解数: 10 / 解答数: 16 (正答率: 62.5%) ギブアップ数: 0

問題文

$f(x)=x^3+7x+6$の値が63の倍数になるような2桁の自然数$x$をすべて求めよ。

解答形式

解1つごとに改行して上から小さい順に半角数字で入力してください。$x=$は書かなくて良いです。


ヒント1

63の倍数は7の倍数かつ9の倍数です。

ヒント2

余りの計算をするときは、例えば$\pmod7$なら、余り$5$を$-2$として捉えると計算が楽になります。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

2元7次不定方程式

zyogamaya 自動ジャッジ 難易度:
4年前

13

問題文

$x,y$を整数とする。不定方程式$x^7+17y=3$の解$x$をすべて求めよ。

解答形式

答えは、$n$を整数とし、
$x=[ab]n+[cd]$
($a,b,c,d$は一桁の自然数)
という形をしています。$a,b,c,d$の値を求め、$abcd$(4桁の自然数)を入力してください。

求長問題3

Kinmokusei 自動ジャッジ 難易度:
4年前

8

問題文

2つの正六角形が図のように配置されています。
赤い線分の長さが10のとき、青い線分の長さを求めてください。
ただし、図中"center"で示した点は各正六角形の外心です。

解答形式

半角数字で解答してください。

求長問題4

Kinmokusei 自動ジャッジ 難易度:
4年前

8

問題文

正七角形2つが図のように配置されています。
赤色の線分の長さが7のとき、青色の線分の長さを求めてください。

解答形式

半角数字で解答してください。

求面積問題14

Kinmokusei 自動ジャッジ 難易度:
4年前

14

問題文

周の長さが30である長方形ABCDがあります。辺CD上に∠APB=90°となるような点Pをとれるとき、長方形ABCDの面積の最大値を求めてください。

解答形式

半角数字で解答してください。

求面積問題9

Kinmokusei 自動ジャッジ 難易度:
4年前

7

問題文

問題文を3つの半円が図のように配置されています。赤い部分の面積が9、緑の部分の面積が5のとき、青い部分の面積を求めてください。

解答形式

半角数字で解答してください。

二重根号

zyogamaya 自動ジャッジ 難易度:
4年前

14

問題文

実数$x$の方程式$3\sqrt{x+1-4\sqrt{x-3}}=x-1$を解け。

解答形式

半角数字、またはTexで解答してください。$x=$は書かなくて良いです。

求長問題11

Kinmokusei 自動ジャッジ 難易度:
4年前

15

問題文

長方形$ABCD$を底面とする四角錐$P-ABCD$があります。$PA=1,PB=4,PC=8$のとき、$PD$の長さを求めてください。

解答形式

半角数字で解答してください。

最大・最小問題

zyogamaya 自動ジャッジ 難易度:
4年前

19

問題文

$a,b,c$がいずれも正の実数であり、$a+b+c=5,abc=1$が成り立つとき、$ab+bc+ca$の最小値を求めよ。

解答形式

答えは既約分数になります。/を用いて入力してください。
例:$\displaystyle\frac{5}{7}$→5/7

求面積問題11

Kinmokusei 自動ジャッジ 難易度:
4年前

9

問題文

【解答形式に注意!】

半径と中心角が等しい扇形に正方形が内接しています。青い正方形と赤い正方形の面積の大小関係を調べてください。
ただし、同じ印をつけた部分の長さは等しいです。

解答形式

(青の面積) > (赤の面積) なら 1
(青の面積) = (赤の面積) なら 2
(青の面積) < (赤の面積) なら 3
を、半角数字で解答してください。

求面積問題5

Kinmokusei 自動ジャッジ 難易度:
4年前

9

問題文

正方形が2つ、図のように配置されています。赤い線分の長さが20のとき、緑で示した四角形の面積を求めてください。
ただし、図中の青点はそれぞれの正方形の対角線の交点です。

解答形式

半角数字で解答してください。

求値問題

Kinmokusei 自動ジャッジ 難易度:
4年前

7

問題文

三角形の3つの内角の大きさを$A,B,C$とします。このとき、次の式の最小値を求めてください。
$$
\frac{1-\cos A}{\cos B+\cos C}+\frac{1-\cos B}{\cos C+\cos A}+\frac{1-\cos C}{\cos A+\cos B}
$$

解答形式

最小値は$\frac {[ア]}{[イ]}$となります。$[ア]+[イ]$を解答してください。
ただし、$[ア],[イ]$にはそれぞれ自然数が入り、その最大公約数は$1$とします。

2曲線で囲まれる部分の面積

zyogamaya 自動ジャッジ 難易度:
4年前

8

問題文

2曲線
$
\begin{cases}
y=2x^3+10x^2+12x+7 \newline
y=x^2+5x+13
\end{cases}
$
で囲まれる部分の面積$S$を求めよ。

解答形式

答えは
$\displaystyle\frac{[abc]}{[de]}$
という形になります。($a,b,c,d,e$は1桁の自然数)
センター、共通テスト方式で答えてください。
例:
$S=\displaystyle\frac{765}{13}$のときは「76513」と入力する。