図のように長方形や直角三角形の内接円が配置されています。青で示した角の角度を求めてください。
度数法で求め、半角数字で0以上360未満の整数を解答してください。 ※度や°などの単位は付けないでください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
緑色の五角形の面積を求めてください。 紫でしめした3つの角は等しく、赤同士、青同士の線分はそれぞれ等しい長さです。
半角数字で解答してください。
図のように正方形・半円が配置されています。正方形の一辺の長さが2であるとき、青で示した部分の面積(の合計)を求めてください。
三角形の3つの内角の大きさを$A,B,C$とします。このとき、次の式の最小値を求めてください。 $$ \frac{1-\cos A}{\cos B+\cos C}+\frac{1-\cos B}{\cos C+\cos A}+\frac{1-\cos C}{\cos A+\cos B} $$
最小値は$\frac {[ア]}{[イ]}$となります。$[ア]+[イ]$を解答してください。 ただし、$[ア],[イ]$にはそれぞれ自然数が入り、その最大公約数は$1$とします。
図中、同じ印のついている辺・角同士は等しいです。 緑の凹四角形の面積が10のとき、青の三角形の面積を求めてください。
長方形$ABCD$を底面とする四角錐$P-ABCD$があります。$PA=1,PB=4,PC=8$のとき、$PD$の長さを求めてください。
図のように2つの半円が配置されています。(右側の半円の直径の一端は左側の半円の中心に一致する。)赤、緑で示した線分の長さがそれぞれ3,10のとき、青で示した四角形の面積を求めてください。 ただし、図中点線で示した直線は2つの半円の共通接線です。
正方形の中に図のように線を引きました。赤、青の線分の長さがそれぞれ1,7のとき、緑の線分の長さを求めてください。
図のように黒・赤・青の正方形と、その外接円が配置されています。黒い正方形の一辺の長さが2であるとき、緑で示した線分の長さを求めてください。
問題文を3つの半円が図のように配置されています。赤い部分の面積が9、緑の部分の面積が5のとき、青い部分の面積を求めてください。
$△ABC$は鋭角三角形とします。次に、$A,B,C$から$BC,CA,AB$におろした垂線の足をそれぞれ$X,Y,Z$とし、$△ABC,△XYZ$の内接円の半径をそれぞれ$r,r'$とします。このとき、次の式の最小値を求めてください。 $$ \frac{r}{r'}\cos{\frac A2}\cos{\frac B2}\cos{\frac C2} $$
$$ \frac{r}{r'}\cos{\frac A2}\cos{\frac B2}\cos{\frac C2}\geq\frac{[ア]\sqrt{[イ]}}{[ウ]}=(最小値) $$ となります。$[ア]+[イ]+[ウ]$を半角数字で解答してください。 ただし、$[ア],[イ],[ウ]$には自然数が入ります。また、分数部分は既約分数に、根号内の数字は最小となるようにしてください。
※2020.11.10 18:49 問題タイトルを修正しました。 (解答に影響はありません)
図中の線分ABの長さを求めてください。 緑で示した2つの三角形の面積の差は11,赤と青で示した線分の長さの差は1です。
2つの合同な長方形を図のように配置しました。赤い三角形の面積が10のとき、青い凹四角形の面積を求めてください。