この問題を解いた人はこんな問題も解いています
図の条件の下で、ピンクで示した線分の長さを求めてください。
互いに素な正整数 $a,b$ を用いて $x=\dfrac{a}{b}$ と表せるので $a+b$ の値を解答してください。
図の条件の下で、青で示した三角形の面積を求めてください。
解答は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので、$a+b$ の値を半角数字で解答してください。
図の条件の下で、赤で示した線分の長さ $x$ を求めてください。
$x^2$ の値を半角数字で解答してください。
半円と、その中心を通る円が図のように配置されています。赤、青で示した弧の長さがそれぞれ3, 4のとき、緑で示した弧の長さを求めてください。
半角数字で解答してください。
図の条件の下で、青で示した線分の長さ $x$ を求めてください。
互いに素な正整数 $a,b$ を用いて $x=\dfrac{a}{b}$ と表せるので $a+b$ の値を半角数字で解答してください。
2つの合同な長方形を図のように配置しました。赤い三角形の面積が10のとき、青い凹四角形の面積を求めてください。
問題文に誤りがあったため、修正しました。
頂角が $30$ 度または $90$ 度である二等辺三角形を図のように配置しました。このとき、ピンクで示した角の大きさは何度ですか?
ピンクの角 $=x$ 度です。$x$ に当てはまる $0$ 以上 $180$ 未満の値を半角数字で解答してください。
図の条件の下で,青で示した線分の長さ $x$ を求めてください.
$x^2$ は正整数となるので,これを解答してください.
図の条件の下で、緑の線分の長さ $x$ を求めてください。
図の条件の下で $x$ の長さを求めてください。 解答形式に注意してください。
図の条件の下で、線分 $CG$ の長さを求めてください。 ※図中の各線分の長さの比は正確とは限りません。
互いに素な正整数 $a,b$ によって $CG=\dfrac{a}{b}$ と表せるので、$a+b$ の値を半角数字で解答してください。
長方形に内接する半円があります。青い三角形の面積が9のとき、赤い線分の長さを求めてください。