expもどき

masorata 自動ジャッジ 難易度: 数学 > 高校数学
2020年6月12日22:54 正解数: 8 / 解答数: 9 (正答率: 88.9%) ギブアップ不可

問題文

すべての複素数に対して定義され、複素数の値をとる関数 $f(z)$ は、すべての複素数 $z,w$ について

$$
f(z+w)=f(z)f(w)+zw ...(*)
$$

をみたすとする。以下の問いに答えよ。

⑴ すべての複素数 $z$ について $f(2)f(z)+z = f(1)f(z+1)+1$ が成り立つことを示せ。
⑵ $(*)$ をみたすような $f(z)$ をすべて求めよ。

解答形式

⑵を解答したうえで、以下の空欄ア~エに当てはまる0~9の整数を順に並べて4桁の半角数字「アイウエ」を入力せよ。根号の中身が最小になるように解答せよ。

$|f(5+11i)|$ のとりうる値のうち最大のものは$(アイ)$, 最小のものは$(ウ)\sqrt{(エ)}$ である。


ヒント1

$f(z+2)=f((z+1)+1)$ である。

ヒント2

⑴の結果で、さらに $f(2)=f(1+1)$ および $f(z+1)$ に $( * )$ を適用してみよ。

$f(z)$ のある程度具体的な形が得られたら、それを $( * )$ に代入して成り立っているかどうかを調べることにより、$f(1)-1$ の値が2通りに限られることを示せ。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Sign in with Google Discordでログイン パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

うぉり~っす

masorata 自動ジャッジ 難易度:
3年前

6

問題文

数列 $ \{ a_n \} $ $(n=1,2\dots)$ を、
$$
a_1=1,\ a_{n+1} = \sum_{k=1}^{n}\frac{8k-3}{4n^2-1}a_k\ (n = 1,2,...)
$$

で定める。$\displaystyle \lim_{n\to\infty}{a_{n}}$ を求めよ。

解答形式

求める極限値は、ある有理数 $q$ を用いて $q \pi$ と表せる。この $q$ を小数で表し、小数第4位を四捨五入したものを入力せよ。すべて半角数字で入力すること。なお、もし $3/2=1.5$のようになる場合は、$1.500$ と入力せよ。

二等分2

okapin 自動ジャッジ 難易度:
3年前

3

問題文

$xy$平面において点$O$を中心とする単位円上に異なる2点を取り、それぞれ$P_0,Q$とする(ただし$P_0,O,Q$は一直線上にないものとする)。また、$\angle P_0OQ$のうち小さい方の角を$\theta$とする$(0<\theta<\pi)$。
これから、以下の操作を$i=1,2,3,…,n$について計$n$回行う。

(操作)
弧$P_{i-1}Q$のうち短い方の弧を2等分するような単位円上の点を$P_i$とし、$\triangle P_{i-1}P_iQ$の面積を$S_i$とする。

このとき、
$$S_i=\sin\frac{\theta}{\fbox{ア}^i}-\frac{1}{2} \sin\frac{\theta}{\fbox{イ}^{i-1}}$$となるので、
$$\sum_{i=1}^n2^{i-1}S_i=\frac{1}{2}\left(\fbox{ウ}^n\sin\frac{\theta}{\fbox{エ}^n}-\sin\theta\right)$$となる。ここで$n\to\infty$とすると
右辺の極限値は、
$$\frac{1}{2}(\theta-\sin\theta)$$となり扇形$P_0OQ$から$\triangle P_0OQ$を取り除いた図形の面積に収束することが分かる(図形的にも明らか)。

解答形式

$\fbox{ア}$~$\fbox{エ}$に入る整数を半角で1,2,…行目に入力してください。

18月前

3

問題文

図の条件の下で、青で示した線分の長さ $x$ を求めてください。
なお、緑で示した2つの角の大きさは等しく、ピンクで示した点は三角形の重心です。

解答形式

半角数字で解答してください。

球を対称式で移す

masorata 自動ジャッジ 難易度:
3年前

6

問題文

実数 $a,b,c$ が $a^2+b^2+c^2\leqq 1$ を満たして動くとき、
座標空間上の点 $(a+b+c, ab+bc+ca, abc)$ が動く領域を $D$ とする。
以下の問いに答えよ。

⑴ $yz$ 平面に平行な平面 $\pi_t\colon \ x=t$ と $D$ が共有点を持つような実数 $t$ の範囲を求めよ。

⑵ $t$ が⑴で求めた範囲にあるとき、平面 $\pi_t$ と $D$ の共通部分を $E_t$ とする。
このとき、 ある $t$ の関数 $m(t), M(t)$ および $t$ と $y$ の関数 $p(t,y),q(t,y)$ が存在して、

$$
\begin{eqnarray}
E^1_t &=& \{ (x,y,z)|\ x=t,\ m(t) \leqq y \leqq M(t) \}\\
E^2_t &=& \{ (x,y,z)|\ x=t,\ z^2+p(t,y)z+q(t,y)\leqq0 \}
\end{eqnarray}
$$

とおけば $E_t = E^1_t \cap E^2_t $ と表せる。このような $m(t), M(t), p(t,y),q(t,y)$ を求めよ。

⑶ $E_t$ の面積を $S(t)$ とおく。$t$ が⑴で求めた範囲にあるとき、$S(t)$ を $t$ の式で表せ。 ただし、 $E_t$ がただ一点からなるときは $S(t)=0$ であるとする。

⑷ $D$ の体積 $V$ を求めよ。

解答形式

⑷のみ解答せよ。解は $V = \frac{\sqrt{(ア)}}{(イウ)}\pi$ と書ける。(ア)、(イウ)に当てはまる自然数をそれぞれ1,2行目に半角で入力せよ。ここでア,イ,ウの各文字には0から9までの整数のいずれかが入る。たとえば(ア)=3(イウ)=57 と解答する場合は、1行目に「3」、2行目に「57」と入力せよ。なお、根号の中身が最小になるように解答すること。

max漸化式

masorata 自動ジャッジ 難易度:
2年前

8

問題文

数列 $ \{ a_n \} $ $(n=1,2\dots)$ を、
$$
a_1=2,\ a_2=3,\ a_{n+1} = \max_{1 \leqq k \leqq n} \{ (n-k+1)a_k \}\ (n \geqq 2)
$$

で定める。$ \{ a_n \} $ の一般項を求め、さらに $\log_{3}{(a_{6062})}$ の値を求めよ。

解答形式

$\log_{3}{(a_{6062})}$ はある自然数となるので、その値を半角数字で答えよ。

よじさんじ

masorata 自動ジャッジ 難易度:
3年前

9

問題文

実数$ a $ を $a=\sqrt[3]{1+\sqrt2} +\sqrt[3]{1-\sqrt2}$ で定める。以下の問いに答えよ。

⑴ $a^3+3a-2=0$ であることを示せ。また、$0<a<2$ を示せ。

⑵ $x$ について以下の恒等式が成り立つことを示せ。
$$
x^4+4x-3=(x^2+a)^2-2a(x-\frac{1}{a})^2
$$

⑶ 4次方程式 $x^4+4x-3=0$ の実数解を $a$ を用いて表せ。

解答形式

⑶のみ解答せよ。解は2つ存在し、
$$
x= -\sqrt{\frac{ア}{イ}}\ \pm \ \sqrt{\sqrt{\frac{ウ}{エ}}-\frac{オ}{カ}}
$$

の形である。ア~カのそれぞれには1から9までの自然数または文字$a$が入る。
ア~カに当てはまる数字または文字を、順にすべて半角で入力せよ。
たとえばア=2、イ=7、ウ=3、エ=5、オ=8、カ=$a$ と解答する場合は、
「27358a」と入力せよ。

求長問題12

Kinmokusei 自動ジャッジ 難易度:
2年前

4

問題文

長方形・正方形・円が図のように配置されています。赤で示した線分の長さが7、長方形の面積が12のとき、青い線分の長さとしてあり得るものを全て求めてください。

解答形式

解答は$\sqrt{\fbox {アイ}},\frac{\sqrt{\fbox{ウエオ}}}{\fbox カ}$となります。文字列「アイウエオカ」を解答してください。ただし、根号の中身が平方数の倍数とならないように解答してください。


【補助線主体の図形問題 #017】
 今回は方針により計算量が変化する問題を用意しました。とはいえ暗算で解くには幾分厳しいです。簡単な計算用紙&筆記具をお手元にご用意の上で挑戦してみてください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\def\mytri#1{\triangle \mathrm{#1}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 全体方針をぼんやりと
  2. ヒント1の続き
  3. ヒント2の続き
  4. ヒント3の続き
18月前

6

問題文

図の条件の下で、ピンクで示した線分の長さ $x$ を求めてください。
なお、外側の四角形は正方形です。

解答形式

半角数字で解答してください。

正方形と2つの円

tb_lb 自動ジャッジ 難易度:
2年前

6

【補助線主体の図形問題 #015】
 今回は円がらみの求長問題にしてみました。地道なド根性解法もありますが、補助線次第では暗算も可能なように仕込んであります。お好みの解法・手法で挑戦してみてください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\def\mytri#1{\triangle \mathrm{#1}}
\def\myang#1{\angle \mathrm{#1}}
\renewcommand\deg{{}^{\circ}}
\def\myarc#1#2{\stackrel{\style{transform:matrix(#1,0,0,1.5,0,2)}{\frown}}{\mathrm{#2}}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 前半の方針をぼんやりと
  2. ヒント1の続き
  3. 後半の方針をぼんやりと
  4. ヒント3の続き

次の式を因数分解しなさい

$2(x-y)^2-xy(x^2+2xy+y^2-3)+(2x+2y)^2-(x+y)^2+xy[(x+y)(x-y)+2y(x+y)+5]$

解答形式

半角で解答のみを記入すること

降べきの順で記入すこと

同じ項の中にx,yが同時にある場合、xを先に記入すること

指数の表記は ^n の形で解答すること

括弧の外にある係数は左側に記入すること

括弧内の項は、文字 数 の順に記入すること

求面積問題7

Kinmokusei 自動ジャッジ 難易度:
3年前

10

問題文

三角形の外側に3つの正方形を図のように作りました。橙・緑・紫の線分の長さを3辺の長さとする三角形(赤い三角形)の面積が57のとき、元の三角形(青い三角形)の面積を求めてください。

解答形式

半角数字で解答してください。