既約モニック多項式の個数

shakayami 自動ジャッジ 難易度: 数学 > 大学数学
2020年6月11日0:06 正解数: 9 / 解答数: 23 (正答率: 39.1%) ギブアップ不可

全 23 件

回答日時 問題 解答者 結果
2025年1月3日16:36 既約モニック多項式の個数 ゲスト
正解
2025年1月3日14:23 既約モニック多項式の個数 ゲスト
正解
2024年11月12日19:25 既約モニック多項式の個数 ゲスト
不正解
2024年6月29日2:00 既約モニック多項式の個数 ゲスト
不正解
2024年5月16日22:15 既約モニック多項式の個数 aaabbb
正解
2024年5月16日21:59 既約モニック多項式の個数 aaabbb
不正解
2024年5月16日21:58 既約モニック多項式の個数 aaabbb
不正解
2024年5月16日21:46 既約モニック多項式の個数 aaabbb
不正解
2024年5月16日21:43 既約モニック多項式の個数 aaabbb
不正解
2024年3月17日16:48 既約モニック多項式の個数 ゲスト
正解
2024年3月17日16:47 既約モニック多項式の個数 ゲスト
不正解
2024年1月10日13:26 既約モニック多項式の個数 MARTH
正解
2024年1月10日13:23 既約モニック多項式の個数 MARTH
不正解
2024年1月3日23:55 既約モニック多項式の個数 sqrt_3
正解
2024年1月3日23:51 既約モニック多項式の個数 sqrt_3
不正解
2022年12月18日16:11 既約モニック多項式の個数 ゲスト
不正解
2022年5月22日12:13 既約モニック多項式の個数 ゲスト
不正解
2022年4月17日8:46 既約モニック多項式の個数 ゲスト
不正解
2021年4月26日3:03 既約モニック多項式の個数 ゲスト
不正解
2021年2月4日9:40 既約モニック多項式の個数 ゲスト
不正解
2021年2月2日19:58 既約モニック多項式の個数 ゲスト
正解
2020年6月11日22:30 既約モニック多項式の個数 nioshinoh_h
正解
2020年6月11日11:58 既約モニック多項式の個数 halphy
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

Incircles

simasima 自動ジャッジ 難易度:
2月前

9

問題文

周長が $10^5$ であり全ての辺の長さが整数であるような三角形の内接円の面積の総和を求めてください。

厳密な問題文
$a+b+c=10^5$ が成り立ち尚且つ各辺の長さが $a,b,c$ である三角形が存在するような順序付いた正整数の組 $(a,b,c)$ 全てについて各辺の長さが $a,b,c$ であるような三角形の内接円の面積の総和を求めてください。

解答形式

答えは互いに素な正整数 $a,b$ を用いて$\frac{a}{b}\pi$ と表せるので、$a+b$ の値を解答してください。

競技冨安四発太鼓

simasima 自動ジャッジ 難易度:
2月前

6

問題文

冨安四発太鼓保存会は冨安四発太鼓の競技化を進めており、全ての曲の長さは $1$ 単位時間と定められました。
冨安四発太鼓のスコアは次のように定められています。
曲が開始した時刻を $0$ とし、太鼓が叩かれた時刻を小さい順に $t_1,t_2,t_3,t_4$ とした時に、スコアは $t_1^{39}t_2^{71}t_3^{94}t_4^{104}$ と定められます。
フニャオ君は曲の中で太鼓をランダムに $4$ 回叩きます。正確には区間 $[0,1]$ から実数を一様ランダムに選ぶという行為を独立に $4$ 回行い選ばれた実数を小さい順に並べ$t_1,t_2,t_3,t_4$ とした時、時刻 $t_1,t_2,t_3,t_4$ に太鼓を叩きます。
この時、フニャオ君のスコアの期待値を求めてください。

解答形式

答えは互いに素な正整数 $a,b$ を用いて $\frac{a}{b}$ と表せるので $a+b$ の値を求めてください。

韓国産高校数学問題 - 1

nflight11 自動ジャッジ 難易度:
9月前

7

問題文

すべての正整数 $n$ に対して $a_{n+1}=a_{n}+a_{n+2}$ を満たす数列 $\{a_n\}$ に対して、次の式が成立する。

$$\sum_{n=1}^\infty \frac{a_n}{2^n}=1998, \sum_{n=1}^\infty \frac{a_{3n}}{3^n}=1106$$

この時、$|a_{1998}a_{1106}|$を求めよ。

解答形式

答えをそのまま入力しなさい。

loop

simasima 自動ジャッジ 難易度:
2月前

15

問題文

集合 $\{ 1,2,...,20 \}$ を $X$ とおきます。
全射である関数 $f:X \to X$ であって以下の条件を満たすものはいくつありますか?
$n< 7$ を満たす正整数全てについて、ある正整数 $k$ が存在して $f^k(n)>11$ が成立する。
補足: $f^n$ は $f$ の $n$ 回合成です。

解答形式

非負整数で解答してください。


問題文

$10^{12}$ 以下の正整数であって,$9$ の倍数または $10$ 進法表記した時どこかの桁に $9$ が現れる数はいくつありますか?

解答形式

非負整数で入力してください。

Furret sequence 1

bzuL 自動ジャッジ 難易度:
17月前

15

問題文

「オ」「タ」「チ」の $3$ 種類の文字で構成される長さ $n$ の文字列に対して,オオタチ度を,その文字列の中で連続する $4$ 文字が「オオタチ」となっているようなものの数と定義します.
 たとえば「チタタオオタチオタチタオオオタチ」のオオタチ度は $2$ で,「チタオオチタオオチタオオ」のオオタチ度は $0$ です.
 長さが $n$ で構成する文字が $3$ 種類のため,文字列としては $3^n$ 種類のものが考えられます.これらのオオタチ度の相加平均を $f(n)$ とします.
 $f(n)$ が正整数になる最小の $n$ を解答してください.

解答形式

半角数字で解答してください.

約数の個数の方程式

kusu394 自動ジャッジ 難易度:
12月前

16

問題文

自然数 $x$ に対して, $d(x)$ で $x$ の正の約数の個数を表します.
$$d(4n-1)+d(4n)=8$$ を満たす自然数 $n$ について, 小さいほうから $7$ 個の総和を求めてください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

追記
=8 のところ =6 と書いてしまっていたため訂正しました
大変申し訳ありません

集合の組の個数

noname 自動ジャッジ 難易度:
12月前

18

問題文

$A,B$を全ての要素が$2$以上$2024$以下の自然数からなる集合で$A$と$B$の和集合の要素数が$2023$個であるものとします。$A,B$から要素を自由に$1$つずつ選ぶとき、どのように要素を選んでもその$2$つの数の最大公約数が$1$になるような$A,B$の組$(A,B)$の個数を求めてください。ただし、必要ならインターネットにある素数表を検索して用いても構いません。また、空集合も条件を満たすものとしてください。

問題を少し変更いたしました。

解答形式

答えは正の整数$n$を用いて$2^n$と表せますから$n$を半角で1行目に入力してください。

円形じゃんけん

J_Koizumi_144 自動ジャッジ 難易度:
16月前

18

問題文

$10$人で輪になってじゃんけんをするとき,どの隣り合う$3$人も「あいこ」にならないような手の出し方は何通りありますか?

解答形式

半角数字で入力してください.

自作問題2(極限)

contrail 自動ジャッジ 難易度:
7月前

10

問題文

方程式 $e^{nx}+x-2=0$ の正の解を$\alpha_n$とおきます.極限$\displaystyle \lim_{n\to \infty} (1+\alpha_n)^n$を求めて下さい.

解答形式

例)半角数字で解答して下さい.

自作問題No.2

Tehom 自動ジャッジ 難易度:
9月前

15

問題文

$64$個の球 $a_0,a_1,...a_{63}$それぞれを白色と黒色で塗り分ける方法で、以下の条件を満たすものは何通りありますか

・任意の整数 $i,j$ $(0\leqq i\leqq7,0\leqq j\leqq4)$ に対し、
$\lbrace a_{8i+j},a_{8i+j+1},a_{8i+j+2},a_{8i+j+3}\rbrace$ に含まれる白色の球と黒色の球が共に偶数個
かつ、
 任意の整数 $k,l$ $(0\leqq k\leqq4,0\leqq l\leqq7)$ に対し、
$\lbrace a_{8k+l},a_{8k+l+8},a_{8k+l+16},a_{8k+l+24}\rbrace$ に含まれる白色の球と黒色の球が共に偶数個

解答形式

半角数字で解答してください.

hinu積分02

hinu 採点者ジャッジ 難易度:
4年前

1

問題

(1) 定積分

$$
\int_0^1 \frac{x\log x}{(x+1)^2}dx
$$

の値を求めよ。

(2) 関数列 ${f_n(x)}$ を

$$
f_{n+1}(x)=(x^x)^{f_n(x)},\quad f_1(x)=x^x
$$

で定める。定積分

$$
\int_0^1(x^x)^{{(x^x)}^{(x^x)\cdots}}dx:=\int_0^1\lim_{n\to \infty} f_n(x)\ dx
$$

の値を求めよ。ただしテトレーション $x^{{x^{x\cdots}}}$ は底 $x$ が $e^{-e}<x<e^{1/e}$ のとき収束することは証明せずに用いて良い。

備考

この問題の正解判定は出題者により手動で行われるため、判定までに時間がかかることがある。