$n$ を $3$ 以上の整数とする。はじめ、黒板には $n-1$ 個の有理数 $\displaystyle \frac{1}{2}, \frac{1}{3},\ldots, \frac{1}{n} $ が書かれている。黒板から $2$ つの有理数 $x,y$ を選んで消し、新たに有理数 $\displaystyle \frac{x+y}{1+xy} $ を書くという操作を繰り返し行う。そして、最後に黒板に残った $1$ つの有理数を既約分数として表すと、分子が $899$ で割り切れた。
このようなことが起こる最小の $n$ を求めよ。
条件を満たす $n$ の最小値を半角数字で1行目に入力せよ。
2行目以降に改行して回答すると、不正解となるので注意せよ。
$x,y,z$は整数とする。また、$p$は素数とする。
$x^{4}+y^{4}+z^{4}-2x^{2}y^{2}-2y^{2}z^{2}-2z^{2}x^{2}-8x^{2}yz-8xy^{2}z-8xyz^{2}=p$となるとき、$p$の最小値を求めよ。また、$p$が最小値をとるとき、$x,y,z$の組を全て求めよ。
$p$の最小値を$p$=~の形式で1行目に、$x,y,z$の組を$(x,y,z)$=~ の形式で2行目以降にすべて書いてください。ジャッジは自分でするのであまり気にしないで自由に回答してください。
正整数 $N$ が $2$ で割り切れる最大の回数を $v_2 (N)$ で表すことにします.
(例 : $v_2(6) = 1, \ v_2(16) = 4$)
このとき,
$$\sum_{i = 1}^{1024} \sum_{j = 1}^{1024} \sum_{k = 1}^{1024} v_2 ( \textrm {gcd} (i, j, k))$$
の値を解答して下さい. ( $\textrm{gcd}(i,j,k)$ で $i,j,k$ の最大公約数を表しているとします.)
半角数字で解答して下さい.
ある正整数 $n$ は以下の条件を満たしました.
このとき,$n$ の最小値を求めてください.
半角数字で正整数で答えてください.
追記:答えを訂正しました.miq氏にはご迷惑をおかけして申し訳ありません.