全問題一覧

カテゴリ
以上
以下

sdzzz

公開日時: 2025年7月2日17:26 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

正の実数 $a,b,c,d$ が,
$$
2(a^2+b^2+c^2+d^2)=(a+b+c+d)^2+8\sqrt{abcd}
$$
を満たす時,以下の値の最小値を求めて下さい.ただし求める値は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので $a+b$ の値を解答してください.
$$
\dfrac{6a+8b+9c}{d}
$$

O.K

公開日時: 2025年7月2日8:25 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ

整数

問題文

$$
a²+b²=c²,gcd(a,b,c)=1
$$
を満たす自然数a,b,cが存在するとき
任意の自然数tに対して
$$
aₜ²+bₜ²=c²ᵗ,gcd(aₜ,bₜ)=1
$$
を満たす自然数aₜ,bₜが存在することを示せ

解答形式

例)ひらがなで入力してください。

shakayami

公開日時: 2025年6月29日22:10 / ジャンル: その他 / カテゴリ: その他 / 難易度: / ジャッジ形式: 自動ジャッジ

文字種クイズ

問題文

漢漢漢ぁあ。
漢漢漢あ漢ああああ漢あ
漢漢あ漢あ
漢あ漢あ
漢ぁあ。

あああ漢ああ
漢ああ漢あ
漢あ漢ああ漢あ
漢ああ漢あ漢あ
漢ああ漢ぁあ。

漢漢ああああ漢あ
漢漢あ漢あ漢ああぁあ、
漢ああ漢あ、
漢漢あああああ。

ああ、ああ、あー、あ。

アアアアあああ。
漢あ漢漢あ漢あ漢ああ
漢あ漢あ漢あ
ああああ
あぁああ漢あああ。

ああああ漢あ、
漢漢あ漢あああ漢あ
漢ああ漢ああああ

漢漢あああああ
ああああああああ
漢ああああ
漢あ漢漢あ
漢あああ漢ぁあ
漢あああああああ

漢漢あ漢漢あ
漢漢漢漢あ
漢あああ漢ああ
漢あ漢ああ
漢漢ああ
アーアア・アアアアアー

あ漢あ漢ああ。
あああああああああああああ。
ああああ漢ああ漢あ漢あ
漢あ漢あああ、
あぁああ漢漢あ
漢あああぁああ、
ああぁあ漢ぁああああああああ。

漢漢あああああ
ああああああああ
漢ああああ
漢ああ漢漢あ
漢あ漢あぁああ
漢ああああああ

漢漢漢あ
漢漢漢漢あ
漢あああ漢あ
あああああ
漢あ漢あ
アーアア・アアアアアー

あああああああああ漢漢あああああああ
漢漢あ漢あ漢あああ漢漢

あああ
漢ああ
漢漢あ
ああああ
漢あ漢ああ

漢あ漢あ
漢あ
漢あ
漢ぁあ
ああぁああ。

漢あ漢漢
漢あ漢漢あああ
1アーアアあ漢あ漢あ

漢漢あああああ
あああ、漢ああ

ああああああああ漢ああああ
ああああああああ漢ああああ。

漢あ漢漢あ           あああ漢漢あ

漢あああああ          漢あ漢ぁあ

漢あ漢ああああ         あああ漢ぁあああぁあ

ああああ漢ああ         漢ああ

漢あ漢あ漢あ漢あ漢あああ    ああああ漢ああ漢あ漢あ

あああああ漢ああああ      あああああ漢ああああ

アーアア・アアアアアー     アーアア・アアアアアー

ああああああ
あああ
ああああぁ
漢あああああ

あああああああ          ああああ、あああ。

ああああ、あぁあ。        あああああああ

ああああ漢漢あ。         ああああ漢漢あ。

ああ漢あああ。          ああ漢あああ。

ああああああああああああああぁ
あああああ
あああああ

アーアア・アアアアアー

漢漢漢あぁあぁぁあ。

解答形式

曲名を入力

hi-yo

公開日時: 2025年6月29日17:31 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$$
\sqrt{log_\frac{1}{2}(\frac{1}{1024})^n}において、奇数の自然数はいくつあるか。
$$

hi-yo

公開日時: 2025年6月28日15:34 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$$
\sqrt{log_\frac{1}{3}(\frac{1}{273})}の整数部分?
$$

hi-yo

公開日時: 2025年6月28日15:25 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$$
log_{2}{8}^{a-2}=(m^{2}-1)a+(n-1)
$$

hi-yo

公開日時: 2025年6月28日9:17 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$$
\sqrt{log_\frac{1}{2}(\frac{1}{256})}の小数部分?
$$

hi-yo

公開日時: 2025年6月28日6:30 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$$
-|-log_\sqrt{a}{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{a}^{32}}}}}}|
$$

hi-yo

公開日時: 2025年6月28日6:18 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$$
|-32log_{i}{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{i}^{32}}}}}}|
$$

ona

公開日時: 2025年6月25日15:26 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ


問題文

nは自然数、x,yは整数とする。(x^n+y^n)/(x^n-y^n)が任意の自然数nに対し、整数となるとき、xとyに関する条件を求めよ

解答形式

答えのみでなく、論述

011-16062

公開日時: 2025年6月25日0:08 / ジャンル: その他 / カテゴリ: その他 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

アメリカの首都は?

kikutaku

公開日時: 2025年6月24日22:18 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 採点者ジャッジ


問題文

f(θ)=−cotθ(1+cot⁻²θ)cos²θsinθ{tanθ−(4sin²θ+4cos²θ)(sinθcosθtanθcotθ)}⇔f(θ)=sinxθである。
xを求めよ。

解答形式

途中式を最小限必ず書く。