公開日時: 2025年11月25日19:31 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
三角形 $ABC$ について,その垂心を $H$ ,外心を $O$ とする.直線 $BH$ と直線 $AC$ との交点を $E$ ,直線 $CH$ と直線 $AB$ との交点を $F$ とすると,$3$ 点 $E,O,F$ は同一直線上にあった.$AH=8,AO=6$ のとき,四角形 $EFBC$ の面積の二乗の値を求めよ.
半角数字で入力してください。
公開日時: 2025年11月25日19:29 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
三角形 $ABC$ について,線分 $BC$ の中点を $M$ とし,$\angle ABC$ の二等分線と直線 $AM$ との交点を $D$ とすると,以下が成立した.
$$BC=4,\angle ADB=\angle AMC=3\angle BAM$$このとき,線分 $AC$ の長さの二乗は正整数 $a,b$ を用いて $a+\sqrt b$ と表せるので,$a+b$ を解答せよ.
半角数字で入力してください。
公開日時: 2025年11月25日19:28 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
任意の正整数 $m$ に対して $n^m-n$ が $10!$ の倍数であるような $10!$ 以下の正整数 $n$ の個数を求めよ.
半角数字で入力してください。
公開日時: 2025年11月25日18:14 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$n^2+78n-79$ を $100$ で割った余りが平方数とならないような最小の正整数 $n$ を求めよ.
半角数字で入力してください(数字のみ)。
公開日時: 2025年11月23日19:11 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ
$p$ を $3$ 以上の素数とする。
$f(x),\ g(x)$ はいずれも整数係数の多項式である。
$f(x),\ g(x)$ が次の条件を全て満たすとき,
存在しうる $f(x),\ g(x)$ の組み合わせは何通りあるか。
$(a)$ $f(g(x)) = x^{p^p} + 1$
$(b)$ $f(0)$ が $p$ で割り切れる。
$(c)$ $1 \le g(0) \le p^{p}$
pを用いて解答。
公開日時: 2025年11月21日23:09 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$a,n$ を正の整数とする.
$$\int ax^ne^xdx$$
の $e^x$ の係数が $2026!$ であるような $(a,n)$ の組は何個ありますか?
整数で解答してください
公開日時: 2025年11月20日20:36 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ
$a, b$ を実数とする。複素数 $z$ に対して
$$
f(z)=z^{2}+a z+b
$$
とおく。また,方程式 $f(z)=0$ のすべての解は $\lvert z\rvert \le 1$ を満たしている。
$(1)$ 点 $f(1+i)$ がとりうる範囲を複素数平面上に図示せよ。
$(2)$ 点 $w$ が虚軸上を動くとき,点 $f(w)$ がとりうる範囲を複素数平面上に図示せよ。
範囲を文章や不等式で表せば可とします。
例)・$3$点$1$,$1+i$,$-1+i$を頂点とする三角形の周及び内部。
・座標平面における不等式 $y\le x^2$が表す領域。
公開日時: 2025年11月20日20:25 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ
$r$ を正の実数とし,自然数 $n$ に対して,整式 $f_n(x)$ を
$$
f_n(x)=\sum_{k=1}^{n}\frac{x^{k}}{r^{k}}
$$
とする。また,整式 $f_n(x)$ を整式 $x^{2}-x-1$ で割った余りを $a_n x + b_n$ とする。
$(1)$ 数列 {${a_n}$},{${b_n}$}の一般項をそれぞれ求めよ。
$(2)$ 数列 {${a_n}$},{${b_n}$} がいずれも $0$ でない実数に収束するために正の実数 $r$ が満たすべき条件を求めよ。
また,そのときの極限値をそれぞれ $r$ を用いて表せ。
特に指定しません。
公開日時: 2025年11月20日20:10 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$O$ を原点とする座標空間において,点 $(0,0,1)$ を中心とする半径 $1$ の球面を $S$ とする。
$S$ 上の $x>0,\ y>0,\ z>1$ を満たす部分に点 $P$ をとり,$P$ において球面 $S$ と接する平面を $L$ とする。
また,平面 $L,\ xy$ 平面,$yz$ 平面,$zx$ 平面によって囲まれる部分を $D$ とする。
$D$ の全ての面に内接する球の半径を $r$ として,$r$ のとりうる値の範囲を求めよ。
$r$ はrで表す。根号は「√」を用いる。その他記号は全て半角で入力。
(例) √3<r<5 √3<=r<=5