全問題一覧

カテゴリ
以上
以下

Weskdohn

公開日時: 2025年10月13日15:05 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 採点者ジャッジ


問題文

整数 $n$ について, $n^5+n^4+32$ が素数でないことを示せ.

解答形式

簡単な証明をお書き下さい.

L4mbdaUpsil0n

公開日時: 2025年10月12日21:44 / ジャンル: その他 / カテゴリ: その他 / 難易度: / ジャッジ形式: 自動ジャッジ

Puzzle

Puzzle #2 (Difficulty: 200)

青,幽霊 → わたくし
虹色,アカウント → ________ _____ (13 characters, no spaces)

半角 英小文字/数字 で解答してください.
* Web 検索,プログラミング,生成 AI を利用しても構いません.

hya_math

公開日時: 2025年10月11日13:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


鋭角三角形$ABC$について,その垂心を$H$,外心を$O$,線分$AB$,$BC$,$CA$の中点をそれぞれ$L,M,N$とします.円$OMN$と直線$LN,LO,LM$の交点のうち,$N,O,M$でないほうをそれぞれ$P,Q,R$とすると以下が成立しました.
$$
AH=6,LN=4, PC\perp CR.
$$
この時,線分$OQ$の長さの二乗の値は互いに素な正の整数$a,b$を用いて$\frac ab$と表せるので$a+b$を回答してください.

hya_math

公開日時: 2025年10月11日13:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


半径1の円$\omega$に内接する凸六角形$A_{1}A_{2}A_{3}A_{4}A_{5}A_{6}$について,線分$A_{1}A_{4},A_{2}A_{5},A_{3}A_{6}$はそれぞれ$\omega$の直径です.直線$A_{1}A_{2}$と直線$A_{3}A_{4}$の交点を$B_{1}$直線$A_{3}A_{4}$と直線$A_{5}A_{6}$の交点を$B_{2}$直線$A_{5}A_{6}$と直線$A_{1}A_{2}$の交点を$B_{3}$とすると以下が成立しました.
$$
\frac {A_{1}A_{2}}{A_{1}A_{5}}+\frac {A_{2}A_{3}}{A_{2}A_{6}}+\frac {A_{3}A_{4}}{A_{3}A_{1}}=3,三角形B_{1}A_{2}A_{3},B_{2}A_{4}A_{5},B_{3}A_{6}A_{1}の面積の和は\frac {24}{5}.
$$
このとき,六角形$A_{1}A_{2}A_{3}A_{4}A_{5}A_{6}$の面積は互いに素な正の整数$a,b$を用いて$\frac ab$と表せるので$a+b$を回答してください.

hya_math

公開日時: 2025年10月11日13:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


鋭角三角形$ABC$について,その外接円を$\Gamma$,外心を$O$,垂心を$H$,点$A$から辺$BC$に下した垂線の足を$D$とします.さらに,直線$AO$と辺$BC$の交点を$E$,直線$AO$と$\Gamma$の交点を$F$とすると以下が成立しました.
$$
OH=10, DH=12, EF=13
$$
このとき$\Gamma$の面積としてありうるものの総和は互いに素な正の整数$a,b$を用いて$\frac ab\pi$と表せるので$a+b$を回答してください.

hya_math

公開日時: 2025年10月11日13:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$99989796…090807060504030201$を$97$で割った余りを求めてください.

OooPi

公開日時: 2025年10月11日13:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


正整数 $a,b$ であって以下が整数になるようなすべての組 $(a,b)$ について $ab$ の総和を求めてください
$$
\frac{(3ab+2a+4b-6)^2}{13(a^2b^2+a^2+4b^2+4)}
$$

OooPi

公開日時: 2025年10月11日13:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$100\times100$ のマス目に $1,2,3$ のどれかの数字をそれぞれ書き込む方法は $3^{10000}$ 通りありますが,そのうちどの $3\times3$ マスを選んでも縦横斜め $3$ マスの数字の総和が $3$ の倍数になるような書き込み方は何通りありますか。ただし,回転や反転して一致するものも異なるものとして数える。

hya_math

公開日時: 2025年10月11日13:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


関数$A(n),B(n)$を
$$
A(n)=(1\le x \le nを満たす1001と互いに素な整数xの個数)\\
B(n)=(n\le x \le 1001を満たす1001と互いに素な整数xの個数)
$$
と定めるとき,次の値を求めてください.
$$
\sum_{n=1}^{1000}\quad \frac{A(n)^2}{A(n)-B(n)}
$$

OooPi

公開日時: 2025年10月11日13:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

正整数列 $A_{n}$ を以下のように定義する
$$
1個の2 以上の正整数を要素に持ち,それらの総積が n に等しい
$$  この時 $A_{2^{100}}$ としてありうる数列すべてについて,その要素の
総和を $97$ で割った余りを答えてください。
  ただし,並び替えて一致するものも別々として数える。
例えば $A_{8}$ としてありうるものは $\lbrace8\rbrace,\lbrace2,4\rbrace, \lbrace4,2\rbrace, \lbrace2,2,2\rbrace$ でありその要素の総和は $8+2+4+4+2+2+2+2=26$ である。

解答形式

正整数で答えてください

OooPi

公開日時: 2025年10月11日13:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

#競技数学

問題文

以下の式の値を $1000$ で割った余りを答えよ
$$
47!\sum_{k=1}^{45}\
\frac{2k^{3}+7k^{2}+5k-3}{(k+2)!}
$$

解答形式

正整数で回答してください

mim

公開日時: 2025年10月8日15:51 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 採点者ジャッジ

幾何 微妙

問題文

ある鋭角三角形ABCにおいてAから対辺への
垂線の足をD,ADの中点をM,△ABCの内心を
IとするとAC//MIである。
BD=1,CD=6のとき△ABCの面積を求めよ。

解答形式

ある程度シンプルな形で答えよ。