全問題一覧

カテゴリ
以上
以下

sha256

公開日時: 2024年11月2日16:55 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

整数 数列

問題文

初項が$1(a_1=1)$の数列{$a_n$}は、任意の正整数$n$に対し
$$
a_{n+1}^3-10a_na_{n+1}^2+31a_n^2a_{n+1}-30a_n^3=0
$$
を満たしている。
$a_{60}$としてあり得る値すべての総積を求めたい。
ただし答えは非常に大きいので、答えの正の約数の個数を1000で割ったあまりを答えよ。

解答形式

$0$以上$999$以下の整数を半角英数字で入力してください。

(11/7:一部問題文を修正)

nanohana

公開日時: 2024年10月17日10:03 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

整数 階乗

問題文

$$a,bは負でない整数とする。$$$$このときa!+b!=(a+b)!$$$$を満たす組(a,b)を全て求めよ。$$

解答形式

組(a,b)の個数を入力してください。

34tar0

公開日時: 2024年9月22日14:41 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

整数 素数 N

問題文

素数 $p$ を用いて表される整数 $p-4, p^2-6, p^3-26$ が全て素数となるような $p$ の総和を求めよ。

解答形式

算用数字で解答してください。

masorata

公開日時: 2024年7月5日21:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

整数 まそらた杯

問題文

$n$ を $3$ 以上の整数とする。はじめ、黒板には $n-1$ 個の有理数 $\displaystyle \frac{1}{2}, \frac{1}{3},\ldots, \frac{1}{n} $ が書かれている。黒板から $2$ つの有理数 $x,y$ を選んで消し、新たに有理数 $\displaystyle \frac{x+y}{1+xy} $ を書くという操作を繰り返し行う。そして、最後に黒板に残った $1$ つの有理数を既約分数として表すと、分子が $899$ で割り切れた。

このようなことが起こる最小の $n$ を求めよ。

解答形式

条件を満たす $n$ の最小値を半角数字で1行目に入力せよ。
2行目以降に改行して回答すると、不正解となるので注意せよ。

nanohana

公開日時: 2024年6月27日18:22 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ

整数 素数

問題文

$$p、p^2、p^3、p^4$$が10進数表記ですべていい数字となる自然数pは存在するか。
ただし、いい数字とはどの桁も素数であるような自然数のことである。例えば、252、7352のような自然数のことである。

解答形式

存在するならばそのような自然数pを入力してください。存在しないならば、存在しないことを証明してください。(簡単にでいいです。)

ab

公開日時: 2024年6月7日21:04 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ

整数 素数 フィボナッチ数列

問題文

$f_0=0,f_1=1,f_{n+2}=f_{n+1}+f_n$で定義された数列において、$f_p$が$p$の倍数となるような素数$p$を全て求めてください。

解答形式

計算式全てを書く必要はないので論証の概略と答えを書いてください。

nanohana

公開日時: 2024年5月16日15:02 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

整数 素数 階乗 総和 シグマ

問題文

$$\sum_{k=m}^{n}k!=p$$を満たす自然数m,nと素数pの組(m,n,p)を全て求めよ。

解答形式

mが小さい順に、そして組ごとに改行して解答してください。

例えば(m,n,p)=(1,2,3)(2,3,4)(3,4,5)のときは、
1,2,3
2,3,4
3,4,5
のように入力してください

7777777

公開日時: 2024年5月8日23:03 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ

整数 高校数学 数学

問題文

$2024!$の約数の和は$2025$の倍数であることを示せ。

rt3010

公開日時: 2024年3月25日23:09 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ

整数 素数

問題文

$x,y,z$は整数とする。また、$p$は素数とする。
$x^{4}+y^{4}+z^{4}-2x^{2}y^{2}-2y^{2}z^{2}-2z^{2}x^{2}-8x^{2}yz-8xy^{2}z-8xyz^{2}=p$となるとき、$p$の最小値を求めよ。また、$p$が最小値をとるとき、$x,y,z$の組を全て求めよ。

解答形式

$p$の最小値を$p$=~の形式で1行目に、$x,y,z$の組を$(x,y,z)$=~ の形式で2行目以降にすべて書いてください。ジャッジは自分でするのであまり気にしないで自由に回答してください。

natsuneko

公開日時: 2024年3月1日9:20 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

整数

問題文

正整数 $N$ が $2$ で割り切れる最大の回数を $v_2 (N)$ で表すことにします.
(例 : $v_2(6) = 1, \ v_2(16) = 4$)
このとき,
$$\sum_{i = 1}^{1024} \sum_{j = 1}^{1024} \sum_{k = 1}^{1024} v_2 ( \textrm {gcd} (i, j, k))$$
の値を解答して下さい. ( $\textrm{gcd}(i,j,k)$ で $i,j,k$ の最大公約数を表しているとします.)

解答形式

半角数字で解答して下さい.

noname

公開日時: 2024年2月23日20:08 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ

整数

$1^{2024}+2^{2024}+3^{2024}+4^{2024}+5^{2024}+…+2023^{2024}+2024^{2024}$を$17$で割った余りを求めよ。

元の問題を書き換えて別の問題にしました。前の問題は解いていただけなかったので別の問題に変えました。

解答形式

余りを自然数でお答えください

nmoon

公開日時: 2024年1月1日13:52 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

整数

問題文

ある正整数 $n$ は以下の条件を満たしました.

  • 異なる素因数をちょうど $3$ つもつ.
  • $n$ の素因数を小さい順に $p_{1},p_{2},p_{3}$ とすると,$\displaystyle\frac{n+1}{p_{1}+1},\displaystyle\frac{n+1}{p_{2}+1},\displaystyle\frac{n+1}{p_{3}+1}$ が整数になる.

このとき,$n$ の最小値を求めてください.

解答形式

半角数字で正整数で答えてください.

追記:答えを訂正しました.miq氏にはご迷惑をおかけして申し訳ありません.